Mastering ggplot2: From Novice to Data Viz Pro

Unleash Your Inner Data Scientist

Tuhin Rana

2023-03-17

Table of Contents

Before We Start
What you'll discover e

1 Tie Your Seatbelt
1.1 Imstalling Packages

2 The Dataset

3 The ggplot2 Package

3.1 ADefaultggplot
4 Working with Axes
41 Change Axis Titles e
4.2 Increase Space between Axisand Axis Titles
43 Change Aestheticsof Axis Titles L
44 Change Aesthetics of Axis Text
45 Rotate AxisText L
4.6 Removing Axis Text & Ticks
4.7 Removing Axis Titles
48 Limiting AxisRange
49 Forcing Plot to Start at Origin
4.10 Axes with Same Scaling
411 Using a Function to Alter Labels

5 Working with Titles

51 AddaTitle e
5.2 Making Title Bold & Adding a Space at the Baseline
5.3 Adjusting Position of Titles
54 Using a Non-Traditional Fontin Your Title
5.5 Adjusting Spacing in Multi-Line Text
6 Working with Legends
6.1 DisablingtheLegend
6.2 Eliminating Legend Titles e
6.3 Adjusting Legend Position L
6.4 Modifying Legend Direction
6.5 Change Styleofthe Legend Title
6.6 Modifying Legend Title

15
15
17
18
21
22
23
24
25
27
30
32

33
33
34
35
38
39

43
43
45
48
49
50
51

ii

Table of Contents

10

11

12

13

iv

6.7 Rearrange Order of Legend Keys
6.8 Modify Legend Labels e
6.9 Adjust Background Boxesinthe Legend
6.10 Adjust Size of Legend Symbols
6.11 Exclude a Layer fromtheLegend.
6.12 Manually Adding Legend Items
6.13 Use Other Legend Styles
Working with Backgrounds & Grid Lines

7.1 Change the Panel Background Color.
7.2 Change Grid Lines e
7.3 Change Spacing of Gridlines
7.4 Change the Plot Background Color

Working with Margins

Working with Multi-Panel Plots

9.1 Create a Grid of Small Multiples Based on Two Variables
9.2 Create Small Multiples Based on One Variable
9.3 Allow AxestoRoamFree
9.4 Modify Style of Strip Texts L
9.5 Create a Panel of Different Plots

Working with Colors

10.1 Specify Single Colors
10.2 Assign Colorsto Variables
10.3 Qualitative Variables
10.4 Quantitative Variables

Working with Themes

11.1 Change the Overall Plotting Style
11.2 Change the Font of All Text Elements
11.3 Change the Size of All Text Elements
11.4 Change the Size of All Line and Rect Elements
11,5 Create Your OwnTheme
11.6 Update the Current Theme

Working with Lines

12.1 Add Horizonal or Vertical LinestoaPlot
12.2 AddalLinewithinaPlot e
12.3 Add Curved Lines and ArrowstoaPlot

Working with Text

13.1 AddLabelsto YourData
13.2 Add Text Annotations
13.3 Use Markdown and HTML Rendering for Annotations

65
65
66
69
70

73

75
75
76
78
80
84

91
92
93
93
98

107
107
110
111
112
112
117

119
119
121
123

14

15

16

17

18

19 3D Plots Using {rayshader} package
20 Geographical Data Analysis using {sf} and

Remarks, Tipps & Resources
Using ggplot2 in Loops and Functions
Additional Resources

Working with Coordinates

FlipaPlot
Fixan Axis
Reversean Axis

14.1
14.2
14.3
14.4
14.5

Working with Chart Types

Alternatives to a Box Plot
Create a Rug Representation to a Plot
Create a Correlation Matrix

15.1
15.2
15.3
154
15.5
15.6

Working with Ribbons (AUC, Cl, etc.)

Working with Smoothings
17.1 Default: Adding a LOESS or GAM Smoothing
17.2 Adding a Linear Fit
17.3 Specifying the Formula for Smoothing

Working with Interactive Plots

Combination of {ggplot2} and {shiny}
Plot.ly via {plotly} and {ggplot2}
ggiraph and ggplot2
Highcharts via {highcharter}
Echarts via {echarts4r}
Chart.js via {charter}

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9

Transform an Axis
Circularize a Plot

Create a Contour Plot
Create a Heatmap of Counts

Create a Ridge Plot

Bokeh via {rbokeh}

Advanced Interactive plots using CanvasExpress

Dygraphs via {dygraphs}

Table of Contents

141

......................... 141
......................... 142
......................... 143
......................... 146
......................... 146

151

....................................... 151
................................ 157
...................................... 159
... 162
..................................... 166
......................... 170

175

179

........................... 179
.. 180
............................... 180

185

Before We Start

In December 2017, after completing my first year of statistics, I delved into learning R. Having a background
in Java, C, and C++ coding since high school, I enjoyed R but found its plots not so appealing and the code a bit
tricky. On a quest for something beautiful and user-friendly, I stumbled upon a blog titled Beautiful plotting
in R: A ggplot2 cheatsheet by Zev Ross, last updated in January 2016. Intrigued, I decided to follow the
tutorial step by step, learning a great deal. As time passed, I tweaked and expanded the codes, adding new
chart types and resources.

Realizing that Zev Ross’s blog hadn’t been updated for years, I took the initiative to create my own version,
incorporating updates like the amazing {patchwork}, {ggtext}, and {ggforce} packages. I also shared
insights on custom fonts, colors, and introduced a variety of R packages for interactive charts. The journey
led to a unique tutorial, and now, I've decided to make it public, adding even more updates, such as Maps!
because who doesn’t love maps!!

I incorporated the following enhancements into my tutorial:

« Following the R style guide (e.g., by Hadley Wickham, Google, or the Coding Club style guides).

« Implementing changes to the style and aesthetics of plots, including axis titles, legends, and color
schemes for all plots.

« Ensuring that the tutorial remains up-to-date with changes in {ggplot2} (current version: 3.4.0).

« Modifying data import methods to utilize GitHub as a data source.

+ Offering additional tips on various topics such as chart selection, color palettes, title modifications,
adding lines, adjusting legends, annotations with labels, arrows and boxes, multi-panel plots, Geospatial
Visualizations and interactive visualizations. ...

What you’ll discover

« Tie Your Seatbelt: Setting the stage for your journey into advanced plotting techniques.

«+ The Dataset: Understanding the importance of data in crafting compelling visualizations.

« The {ggplot2} Package: Unleashing the power of {ggplot2} for elegant and customizable plots.

+ A Default ggplot: Exploring the basics with a default {ggplot} and understanding its components.

« Working with Axes: Mastering the art of manipulating axes to convey meaningful insights.

« Working with Titles: Crafting informative and visually appealing titles to captivate your audience.

« Working with Legends: Enhancing clarity and interpretation by effectively managing legends.

« Working with Backgrounds & Grid Lines: Elevating aesthetics with stylish backgrounds and grid lines.

+ Working with Margins: Fine-tuning margins to optimize plot presentation.

« Working with Multi-Panel Plots: Diving into the world of multi-panel plots for comprehensive data
representation.

http://zevross.com/blog/2014/08/04/beautiful-plotting-in-r-a-ggplot2-cheatsheet-3/
http://zevross.com/blog/2014/08/04/beautiful-plotting-in-r-a-ggplot2-cheatsheet-3/
https://twitter.com/zevross
https://style.tidyverse.org
https://google.github.io/styleguide/Rguide.xml
https://ourcodingclub.github.io/2017/04/25/etiquette.html#syntax

Before We Start

+ Working with Colors: Harnessing the power of color to convey information and evoke emotions.

« Working with Themes: Creating cohesive visual narratives with carefully curated themes.

« Working with Lines: Adding emphasis and clarity through strategic use of lines.

« Working with Text: Utilizing text annotations to provide context and highlight key findings.

« Working with Coordinates: Manipulating coordinates to achieve desired plot layouts and perspectives.

« Working with Chart Types: Expanding your repertoire with diverse and impactful chart types.

« Working with Ribbons (AUC, CI, etc.): Enhancing visualizations with ribbons for confidence intervals
and more.

« Working with Smoothings: Incorporating smoothings to reveal underlying trends and patterns.

« Working with Interactive Plots: Engaging your audience with interactive visualizations for dynamic
exploration.

+ Remarks, Tipps & Resources: Leveraging insights, tips, and resources to further refine your plotting

skills.

1 Tie Your Seatbelt

To fully execute the tutorial, you’ll need to install the following packages:

« {ggplot2}, a part of the {tidyverse} package collection
{tidyverse} package collection, including:

{dplyr} for data wrangling
{tibble} for modern data frames
{tidyr} for data cleaning
{forcats} for handling factors

« {corrr} for calculating correlation matrices

« {cowplot} for composing ggplots

« {ggforce} for creating sina plots and other advanced visualizations
+ {ggrepel} for enhancing text labeling in plots

« {ggridges} for creating ridge plots

« {ggsci} for accessing nice color palettes

+ {ggtext} for advanced text rendering in plots

« {ggthemes} for additional plot themes

« {grid} for creating graphical objects

« {gridExtra} for additional functions for “grid” graphics
» {patchwork} for generating multi-panel plots

« {prismatic} for manipulating colors

« {rcartocolor} for accessing great color palettes

+ {scico} for perceptional uniform color palettes

« {showtext} for utilizing custom fonts

+ {shiny} for developing interactive apps

- Several packages for interactive visualizations, including:

{charter}
{echarts4r}
{ggiraph}
{highcharter}
{plotly}

1.1 Installing Packages

To install the necessary packages, run the following code:

1 Tie Your Seatbelt

install CRAN packages
install.packages(

c("ggplot2", "tibble", "tidyr", "forcats", "purrr", "prismatic", "corrr",
"cowplot", "ggforce", "ggrepel", "ggridges", "ggsci", "ggtext", "ggthemes",
"grid", "gridExtra", "patchwork", "rcartocolor", "scico", "showtext",

"shiny", "plotly", "highcharter", "echarts4r")

install from GitHub since not on CRAN
install.packages(devtools)
devtools::install github("JohnCoene/charter")

For instructional purposes, and to ensure smooth transitions for learners navigating directly to specific plots,
I'll load the necessary package beside {ggplot2} in the corresponding section.

2 The Dataset

We are utilizing data from the National Morbidity and Mortality Air Pollution Study (NMMAPS), focusing
specifically on data pertaining to Chicago and the years 1997 to 2000 to ensure manageability of the plots.
For a more comprehensive understanding of this dataset, readers can refer to Roger Peng’s book Statistical
Methods in Environmental Epidemiology with R.

To import the data into our R session, we can employ read_csv() from the {readr} package. Subsequently,
we’ll store the data in a variable named chic using the assignment arrow <-. Just Copy and Paste the following
code.

chic <- readr::read_csv("https://raw.githubusercontent.com/rana2hin/ggplot_guide/master/chicago_data.c

Rows: 1461 Columns: 10

-- Column specification ---------------- -
Delimiter: ","

chr (3): city, season, month

dbl (6): temp, o3, dewpoint, pml0, yday, year

date (1): date

i Use “spec()” to retrieve the full column specification for this data.
i Specify the column types or set “show_col_types = FALSE® to quiet this message.

@ Using namespace Directly

The :: symbolizes namespace and enables accessing a function without loading the entire package.
Alternatively, you could load the readr package first using library(readr) and then execute chic <-
read_csv(...) subsequently.

tibble: :glimpse(chic)

Rows: 1,461
Columns: 10
$ city <chr> "chic", "chic", "chic", "chic", "chic", "chic", "chic", "chic~
$ date <date> 1997-01-01, 1997-01-02, 1997-01-03, 1997-01-04, 1997-01-05, ~
$ temp <dbl> 36.0, 45.0, 40.0, 51.5, 27.0, 17.0, 16.0, 19.0, 26.0, 16.0, 1~
$ o3 <dbl> 5.659256, 5.525417, 6.288548, 7.537758, 20.760798, 14.940874,~

http://www.springer.com/de/book/9780387781662
http://www.springer.com/de/book/9780387781662

2 The Dataset

$ dewpoint <dbls> 37.500, 47.250, 38.000, 45.500, 11.250, 5.750, 7.000, 17.750,~

$ pm10 <dbl> 13.052268, 41.948600, 27.041751, 25.072573, 15.343121, 9.3646~

$ season <chr> "Winter", "Winter", "Winter", "winter", "Winter", "Winter", "~

$ yday <dbl> 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18~

$ month <chr> "Jan", "Jan", "Jan", "Jan", "Jan", "Jan", "Jan", "Jan", "Jan"~

$ year <dbl> 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1~

library(gt)

head(chic, 10) %>% gt()
city date temp 03 dewpoint pml10 season yday month vyear
chic 9862 36.0 5.659256 37.500 13.052268 Winter 1 Jan 1997
chic 9863 45.0 5.525417 47.250 41.948600 Winter 2 Jan 1997
chic 9864 40.0 6.288548 38.000 27.041751 Winter 3 Jan 1997
chic 9865 51.5 7.537758 45.500 25.072573 Winter 4 Jan 1997
chic 9866 27.0 20.760798 11.250 15.343121 Winter 5 Jan 1997
chic 9867 17.0 14.940874 5.750 9.364655 Winter 6 Jan 1997
chic 9868 16.0 11.920985 7.000 20.228428 Winter 7 Jan 1997
chic 9869 19.0 8.678477 17.750 33.134819 Winter 8 Jan 1997
chic 9870 26.0 13.355892 24.000 12.118381 Winter 9 Jan 1997
chic 9871 16.0 10.448264 5.375 24.761534 Winter 10 Jan 1997

3 The ggplot2 Package

gegplot2 is a graphics system that facilitates the declarative creation of visualizations, founded on principles
outlined in The Grammar of Graphics. With ggplot2, you furnish the data, specify how variables should be
mapped to aesthetics, define graphical parameters to employ, and the system handles the rest.

A ggplot is made up several key elements:

1. Data: Your raw dataset that you want to visualize.

2. Geometries geom_: These are the shapes that represent your data, like points, lines, or bars.

3. Aesthetics aes(): This controls how your data is visually represented, including aspects like color,
size, and shape.

4. Scales scale_: These map the data onto the aesthetic dimensions, like converting data values to plot
dimensions or factor values to colors.

5. Statistical transformations stat_: These are statistical summaries of your data, such as calculating
quantiles or fitting curves.

6. Coordinate system coord_: This defines how your data coordinates are mapped onto the plot’s coor-
dinate system.

7. Facets facet_: This organizes your data into a grid of plots based on specified variables.

8. Visual themes theme(): These set the overall appearance of your plot, covering things like back-
ground, grids, axes, default fonts, sizes, and colors.

The number of elements may vary depending on the situation you’re working on.

3.1 A Default ggplot

Before diving into the capabilities of {ggplot2}, we need to load the package. Alternatively, we can load it
through the tidyverse package collection:

library(ggplot2)

Or,

library(tidyverse)

-- Attaching core tidyverse packages -----------------——-——---- tidyverse 2.0.0 --
v dplyr 1.1.4 v readr 2.1.5

v forcats 1.0.0 v stringr 1.5.1

v lubridate 1.9.3 v tibble 3.2.1

https://link.springer.com/chapter/10.1007/978-3-642-21551-3_13
https://www.tidyverse.org/

3 The ggplot2 Package

vV purrr 1.0.2 v tidyr 1.3.1

-- Conflicts ---------—- - - tidyverse_conflicts() --

x dplyr::filter() masks stats::filter()

x dplyr::lag() masks stats::lag()

i Use the conflicted package (<http://conflicted.r-1lib.org/>) to force all conflicts to become errors

The syntax of {ggplot2} differs from base R. Following the basic elements, a default ggplot requires specifying
three things: the data, aesthetics, and a geometry. To begin defining a plotting object, we call ggplot (data =
df), indicating that we’ll work with that dataset. Typically, we aim to plot two variables—one on the x-axis
and one on the y-axis. These are positional aesthetics, so we add aes(x = varl, y = var2) tothe ggplot()
call (where aes () denotes aesthetics). However, there are cases where one may need to specify one, three, or
more variables, which we’ll address later.

I Pay Attention!

We indicate the data outside of aes() and include the variables that ggplot maps to the aesthetics inside
of aes().

In this instance, we assign the variable date to the x-position and the variable temp to the y-position. Subse-
quently, we’ll also map variables to various other aesthetics such as color, size, and shape.

(g <- ggplot(chic, aes(x = date, y = temp)))

75-

50 -

temp

25-

1997 1998 1999 2000 2001
date

Ah, the reason only a panel is generated when executing this code is because {ggplot2} lacks information
on how we want to visualize the data. We still need to specify a geometry!

3.1 A Default ggplot

In {ggplot2}, you can store the current ggobject in a variable of your choosing, such as g. This allows you
to extend the ggobject later by adding additional layers, either all at once or by assigning it to the same or
another variable.

@ A Quick Tip!

By using parentheses when assigning an object, the object will be printed immediately. Instead of
writing g <- ggplot(...) followed by g, we can simply write (g <- ggplot(...)).

There’s a wide array of geometries in {ggplot2}, often referred to as geoms because their function names
typically start with geom_. You can find the full list of default geoms here, and there are even more options
available through extension packages, which you can explore here. To instruct {ggplot2} on the style we
want to use, we can, for example, add geom_point () to create a scatter plot:

g + geom_point()

Great! However, this data could also be represented as a line plot (although it might not be the optimal choice,
but it’s a common practice). So, we can simply replace geom_point () with geom_line() and boom!

g + geom_line()

https://ggplot2.tidyverse.org/reference/
https://exts.ggplot2.tidyverse.org/

3 The ggplot2 Package

75 -
o 50-
=
g
25-
O -
1997 1998 1999 2000 2001
date

Indeed, one can combine multiple geometric layers, and this is where the magic and fun truly begin!

g + geom_line() + geom_point()

temp

1998 1999 2000 2001
date

1997

That’s enough discussion on geometries for now. Don’t worry, we’ll dive into various plot types at a later

point, as outlined here.

10

3.1 A Default ggplot

3.1.1 Change Properties of Geometries

Within the geom_* command, you can already manipulate visual aesthetics such as the color, shape, and size
of your points. Let’s transform all points into large fire-red diamonds!

g + geom_point(color = "firebrick", shape = "diamond", size = 2)

i,

75-
L)
»
Ak’
s 0
&
o 50- %, o
E < {3
13 o 2
‘ ;
o X |
25- e
&,’ 0§
N 3
0- ? .
1997 2001

1 Color or Colour?

{ggplot2} understands both color and colour as well as the short version col.

@ Color Presets X

You can utilize preset colors (a full list can be found here) or hex color codes, both enclosed in quotes.
Additionally, you can specify RGB/RGBA colors using the rgb () function. Click to expand:

g + geom_point(color = "#b22222", shape = "diamond", size = 2)
g + geom_point(color = rgb(178, 34, 34, maxColorValue = 255), shape = "diamond", size =

11

2)

http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf
https://www.techopedia.com/definition/29788/color-hex-code

3 The ggplot2 Package

< <
75- 75 -
o 50 = ’. o 50 = ’.
€ Y g .
© } " }
25- 25 -
bat é § bat é §
¢ o < ® ¢ o < ®
? 1 . L
O - . S * O N * < *
1997 1998 1999 2000 2001 1997 1998 1999 2000 2001
date date

Each geom has its unique properties, referred to as arguments, and the same argument might produce different

effects depending on the geom you’re employing.

g + geom_point(color = "firebrick", shape = "diamond", size 2) +
geom_line(color = "firebrick", linetype = "dotted", lwd = .3)

75 -
o 50-
=
(0]
—
25-
O -
1997 1998 1999 2000 2001
date

12

3.1 A Default ggplot

3.1.2 Replace the default ggplot2 theme

To further demonstrate ggplot’s versatility, let’s enhance the appearance by removing the default grayish
{ggplot2} style and setting a different built-in theme, such as theme_bw(). By using theme_set (), all subse-
quent plots will adopt the same black-and-white theme. This adjustment will notably enhance the appearance
of the red points!

theme_set (theme_bw())

g + geom_point(color = "firebrick")
754
o 501
e
3
251
0 -
1997 1998 1999 2000 2001
date

For further details on using built-in themes and customizing themes, refer to the section “Working with
Themes”. Starting from the next chapter, we’ll also utilize the theme () function to customize specific elements
of the theme.

! Remember!

theme () is a crucial command for manually adjusting various theme elements such as texts, rectangles,
and lines.

To explore the numerous details of a ggplot theme that can be modified, refer to the extensive list available
here. Take your time, as it’s a comprehensive list!

13

https://ggplot2.tidyverse.org/reference/theme.html

4 Working with Axes

4.1 Change Axis Titles

To add clear and descriptive labels to the axes, we can utilize the 1abs () function. This function allows us to
provide a character string for each label we wish to modify, such as x and y:

ggplot(chic, aes(x = date, y = temp)) +
geom_point(color = "firebrick") +
labs(x = "Year", y = "Temperature (°F)")

75 -
o
e
() i [
5 e
o o
(]
o
5
= 25-

&'

- @
[]
1997 1998 1999 2000 2001
Year

@ xlab() and ylab()
You also can add axis titles by using x1ab () and ylab(). Click to see example.

ggplot(chic, aes(x = date, y = temp)) +
geom_point (color = "firebrick") +
xlab("Year") +
ylab("Temperature (°F)")

15

4 Working with Axes

Temperature (°F)

1 1 1 1
1998 1999 2000 2001
Year

Typically, you can specify symbols by directly adding the symbol itself (e.g., “”). However, the code below
also enables the addition of not only symbols but also features like superscripts:

ggplot(chic, aes(x
geom_point (color
labs(x = "Year",

. Lo
Temperature (o I:)(Hey, why should we use metric units?!)

16

y

date, y = temp)) +
"firebrick") +

expression(paste("Temperature (", degree ~ F, ")"A"(Hey, why should we use m

1998 1999 2000 2001

4.2 Increase Space between Axis and Axis Titles

4.2 Increase Space between Axis and Axis Titles

theme() is a crucial command for adjusting specific theme elements such as texts, titles, boxes, symbols,
backgrounds, and more. We’ll be utilizing this command extensively! Initially, we’ll focus on modifying
text elements. We can customize the properties of all text elements or specific ones, such as axis titles, by
overriding the default element_text () within the theme() call:

ggplot(chic, aes(x = date, y = temp)) +

geom_point(color = "firebrick") +

labs(x = "Year", y = "Temperature (°F)") +

theme(axis.title.x = element_text(vjust = 0, size = 15),
axis.title.y = element_text(vjust = 2, size = 15))

~
(6]
1

50-

Temperature (°F)

1997 1998 1999 2000 2001
Year

The vjust parameter controls vertical alignment and typically ranges between 0 and 1, but you can also
specify values outside that range. It’s worth noting that even when adjusting the position of the axis title
along the y-axis horizontally, we still need to specify vjust (which is correct from the perspective of the label’s
alignment). Additionally, you can modify the distance by specifying the margin for both text elements:

ggplot(chic, aes(x = date, y = temp)) +

geom_point(color = "firebrick") +

labs(x = "Year", y = "Temperature (°F)") +

theme(axis.title.x = element_text(margin = margin(t = 10), size = 15),
axis.title.y = element_text(margin = margin(r = 10), size = 15))

17

4 Working with Axes

75-
—~
LL
P
)
S so- °®
+— [
© o
(]
o
£ o5- ‘;
e A

<

o- &
[}
1997 1998 1999 2000 2001
Year

The labels t and r within the margin() object correspond to top and right, respectively. Alternatively, you
can specify all four margins using margin(t, r, b, 1). It’s important to note that we need to adjust the
right margin to modify the space on the y-axis, not the bottom margin.

@ Having trouble with Margins?

A helpful mnemonic for remembering the order of the margin sides is “t-r-ou-b-I-¢”.

4.3 Change Aesthetics of Axis Titles

Once more, we utilize the theme () function to modify the axis.title element and/or its subordinated el-
ements, axis.title.x and axis.title.y. Within the element_text () function, we can override defaults
for properties such as size, color, and face:

ggplot(chic, aes(x

date, y = temp)) +

geom_point(color = "firebrick") +

labs(x = "Year", y = "Temperature (°F)") +

theme (axis.title = element_text(size = 15, color = "firebrick",
face = "italic"))

18

4.3 Change Aesthetics of Axis Titles

75-
)

LL

o

S—

)

S s0-
+— []
© .
)

o

5

|_

o
1

N
5

C” olp AP

5 o

1 1 1 1
1998 1999 2000 2001
Year

The face argument can be used to make the font bold or italic or even bold.italic.

ggplot(chic, aes(x = date, y = temp)) +

geom_point(color = "firebrick") +

labs(x = "Year", y = "Temperature (°F)") +

theme (axis.title.x = element_text(color = "sienna", size = 15),
axis.title.y = element_text(color = "orangered", size = 15))

75-

Temperature (°F)

19

4 Working with Axes

@ Customising Invidual Axis

You could also employ a combination of axis.title and axis.title.y, as axis.title.x inherits
values from axis.title. Expand to See the example below:

ggplot(chic, aes(x = date, y = temp)) +

geom_point(color = "firebrick") +

labs(x = "Year", y = "Temperature (°F)") +

theme (axis.title = element_text(color = "sienna", size = 15),
axis.title.y = element_text(color = "orangered", size = 15))

~
ul
1

Temperature (°F)

You can adjust some properties for both axis titles simultaneously, while modifying others exclusively for one
axis or individual properties for each axis title:

date, y = temp)) +

"firebrick") +

= "Temperature (°F)") +

element_text(color = "sienna", size = 15, face = "bold"),

ggplot(chic, aes(x
geom_point (color
labs(x = "Year",
theme (axis.title
axis.title.y = element_text(face = "bold.italic"))

I <

20

4.4 Change Aesthetics of Axis Text

75-
~—~

LL

o

N—r

o

= o
© o
)

Q

5

|_

o
1

N
5

C” olp AP

3 o

4.4 Change Aesthetics of Axis Text

Likewise, you can alter the appearance of the axis text (i.e., the numbers) by utilizing axis.text and/or its
subordinated elements, axis.text.x and axis.text.y:

ggplot(chic, aes(x

date, y = temp)) +

geom_point(color = "firebrick") +

labs(x = "Year", y = "Temperature (°F)") +

theme(axis.text = element_text(color = "dodgerblue", size = 12),
axis.text.x = element_text(face = "italic"))

21

4 Working with Axes

Temperature (°F)

4.5 Rotate Axis Text

You can rotate any text elements by specifying an angle. Subsequently, you can adjust the position of the
text horizontally (0 = left, 1 = right) and vertically (0 = top, 1 = bottom) using hjust and vjust:

ggplot(chic, aes(x = date, y = temp)) +
geom_point(color = "firebrick") +
labs(x = "Year", y = "Temperature (°F)") +
theme(axis.text.x = element_text(angle = 50, vjust = 1, hjust = 1, size = 12))

22

4.6 Removing Axis Text & Ticks

75-

(™

e

L50- @
=)

- [}
© o
(]

o

5

l_

o
[

o
9 l
T aw Ly
()

4.6 Removing Axis Text & Ticks

There might be rare occasions where you need to remove axis text and ticks. Here’s how you can achieve
it:

ggplot(chic, aes(x = date, y = temp)) +

geom_point(color = "firebrick") +
labs(x = "Year", y = "Temperature (°F)") +
theme(axis.ticks.y = element_blank(),

axis.text.y = element_blank())

23

4 Working with Axes

T

)

o

=

©

Q

3 Y

& §
3
[]
[]

1997 1998 1999 2000 2001

Year

I've introduced three theme elements—text, lines, and rectangles—but there’s actually one more:

element_blank(), which removes the element entirely. However, it’s not considered an official ele-
ment like the others.

@ Removing Theme Element

If you wish to remove a theme element entirely, you can always use element_blank().

4.7 Removing Axis Titles

We can use theme_blank(), but it’s much simpler to just omit the label in the labs() (or xlab()) call:

ggplot(chic, aes(x = date, y = temp)) +
geom_point(color = "firebrick") +
labs(x = NULL, y = "")

24

4.8 Limiting Axis Range

<
0- ®

oﬂﬂ.

1 1 1
1997 2000 2001

@ RAnother Tip!

Note that NULL removes the element (similarly to element_blank()), while empty quotes "" will keep
the spacing for the axis title but print nothing.

4.8 Limiting Axis Range

Occasionally, you may want to focus on a specific range of your data without altering the dataset itself. You
can accomplish this with ease:

ggplot(chic, aes(x = date, y = temp)) +
geom_point(color = "firebrick") +
labs(x = "Year", y = "Temperature (°F)") +
ylim(c(0, 50))

Warning: Removed 777 rows containing missing values or values outside the scale range
(*geom_point()).

25

4 Working with Axes

O S P 'i'r"t

2]
°
} S ‘e C
40- o O t X f —
. B i ¢
n =£ . -
03- @@ M ¥ §
5 'é. ’ e
§ [® s : ..
@ o s $’°. o:.
2 20- ¢ o
£ ®@g0 ° % °
o 8 % . % .
[] ‘ [
°
10- Q. ° o0
° - ° e
3 : 3
)
o- ¥ °
19I97 19I98 19I99 ZOIOO 2OI01
Year
Alternatively, you can utilize scale_y_continuous(limits = c¢(0, 50)) or coord_cartesian(ylim =

c(0, 50)). The former removes all data points outside the specified range, while the latter adjusts the visible

area, similar to ylim(c(0, 50)). At first glance, it may seem that both approaches yield the same result.
However, there is an important distinction—compare the following two plots:

Warning: Removed 777 rows containing missing values or values outside the scale range
(T geom_point()).

scale_y_continuous(limits) ¢ coord_cartesian(ylim)
0 o % & + > §rtg zl
X 1 ; $ X 1 -
40- 08 40-08
i1l }
g - ;g ! g - ;g l
; £ : ¢
220-& - 220-& -
E 9o ¥ $.l E 9o ¥ ¢ 'g
a) | |) | D
o- ¢ T 2 . 0t T .
N R B | R T I |
0- ! L4 0- t : []
19I97 19I98 19I99 20I00 20I01 192)7 19I98 1999 20I00 20I01
Year Year

26

4.9 Forcing Plot to Start at Origin

You may have noticed that on the left, there is some empty buffer around your y limits, while on the right,
points are plotted right up to the border and even beyond. This effectively illustrates the concept of subsetting

(left) versus zooming (right). To demonstrate why this distinction is significant, let’s examine a different chart
type: a box plot.

Warning: Removed 777 rows containing non-finite outside the scale range
(T stat_boxplot() ™).

scale_y_continuous(limits) ¢ coord_cartesian(ylim)
50- | | | | 50 -
40- 40-
L L
® 30- © 30-
2 2
© ©
8 20- 8 20-
= £
@ ' @
10- o 10-
[]
8
0- ! L 0-
1957 19@8 1599 ZObO 1997 19b8 1959 ZObO
Year Year

Indeed, because scale_x|y_continuous() subsets the data first, we obtain completely different (and poten-
tially incorrect, especially if this was not our intention) estimates for the box plots! This realization highlights
the importance of ensuring data integrity throughout the plotting process. It’s crucial to avoid inadvertently

manipulating the data while plotting, as it could lead to inaccurate summary statistics reported in your report,
paper, or thesis.

4.9 Forcing Plot to Start at Origin

Related to that, you can instruct R to plot the graph starting at the origin:
chic_high <- dplyr::filter(chic, temp > 25, 03 > 20)

ggplot(chic_high, aes(x = temp, y = 03)) +
geom_point(color = "darkcyan") +
labs(x = "Temperature higher than 25°F",
y = "Ozone higher than 20 ppb") +
expand_limits(x = 0, y = 0)

27

4

Ozone higher than 20 ppb

Working with Axes

40~

20-

0 25 50 75
Temperature higher than 25°F

28

@ Another Way using coord_cartesian(xlim = c(0, NA), ylim = c(0, NA))

Using coord_cartesian(xlim = c(0, NA), ylim = c(0, NA)) will produce the same result. CLICK
to See the example below:

chic_high <- dplyr::filter(chic, temp > 25, 03 > 20)

ggplot(chic_high, aes(x = temp, y = 03)) +
geom_point(color = "darkcyan") +
labs(x = "Temperature higher than 25°F",
y = "Ozone higher than 20 ppb") +
coord_cartesian(xlim = c(0, NA), ylim = c(0, NA))

4.9 Forcing Plot to Start at Origin

Q
o
2 40-
o
N
c
]
ey
e}
o
e
2
< 20-
()
c
o
N
o

0_

1 1 1 1
0 25 50 75
Temperature higher than 25°F

But we can also ensure that it truly starts at the origin!

ggplot(chic_high, aes(x = temp, y = 03)) +
geom_point(color = "darkcyan") +
labs(x = "Temperature higher than 25°F",
y = "Ozone higher than 20 ppb") +
expand_limits(x = 0, y = 0) +
coord_cartesian(expand = FALSE, clip = "off")

29

4 Working with Axes

50-

N
o
[

w
o
[

Ozone higher than 20 ppb
N
o

[EnY
o
1

01 1 1 1
0 25 50 75

Temperature higher than 25°F

@ Tip

The clip = "off" argument in any coordinate system, always starting with coord_#, enables drawing
outside of the panel area.

Here, I invoke it to ensure that the tick marks at c(0, 0) remain intact and are not truncated. For further
insights, refer to the Twitter thread by Claus Wilke.

4.10 Axes with Same Scaling

For demonstration purposes, let’s plot temperature against temperature with some random noise. The
coord_equal () function provides a coordinate system with a specified ratio, representing the number of
units on the y-axis equivalent to one unit on the x-axis. By default, ratio = 1 ensures that one unit on the
x-axis is the same length as one unit on the y-axis:

ggplot(chic, aes(x = temp, y = temp + rnorm(nrow(chic), sd = 20))) +
geom_point(color = "sienna") +
labs(x = "Temperature (°F)", y = "Temperature (°F) + random noise") +
x1lim(c(0, 100)) + ylim(c(0, 150)) +
coord_fixed()

Warning: Removed 46 rows containing missing values or values outside the scale range
(*geom_point()).

30

https://twitter.com/clauswilke/status/991542952802619392?lang=en

4.10 Axes with Same Scaling

150 -

100~

Temperature (°F) + random noise

0 25 50 75 100
Temperature (°F)

Ratios higher than one result in units on the y-axis being longer than units on the x-axis, while ratios lower
than one have the opposite effect:

ggplot(chic, aes(x = temp, y = temp + rnorm(nrow(chic), sd = 20))) +
geom_point(color = "sienna") +
labs(x = "Temperature (°F)", y = "Temperature (°F) + random noise") +
xlim(c(0, 100)) + ylim(c(0, 150)) +
coord_fixed(ratio = 1/5)

Warning: Removed 62 rows containing missing values or values outside the scale range
(T geom_point()).

1
100

o
0
o
e
e 150-
S
S
G
= 100-
+
o
o
N 50_
o
=
©
o O0-
o
5
|_

Temperature (°F)

31

4 Working with Axes

4.11 Using a Function to Alter Labels

Occasionally, it’s useful to slightly modify your labels, such as adding units or percent signs, without altering
your underlying data. You can achieve this using a function:

ggplot(chic, aes(x = date, y = temp)) +
geom_point(color = "firebrick") +

labs(x = "Year", y = NULL) +
scale_y_continuous(label = function(x) {return(paste(x, "Degrees Fahrenheit"))})

75 Degrees Fahrenheit -

50 Degrees Fahrenheit -

25 Degrees Fahrenheit -

<

0 Degrees Fahrenheit - !

|

1997 1998 1999 2000 2001

32

5 Working with Titles

5.1 Add a Title

We can add a title by using the ggtitle() function:

ggplot(chic, aes(x = date, y = temp)) +
geom_point(color = "firebrick") +
labs(x = "Year", y = "Temperature (°F)") +
ggtitle("Temperatures in Chicago")

Temperatures in Chicago

75-

(T

o

O50- @
>

- []
o o
(D]

o

5

|_

o
[

>
2

G e AP

. wi,

1998 1999 2000 2001
Year

Alternatively, you can utilize 1labs (). Here, you can include multiple arguments, such as a subtitle, a caption,
and a tag, in addition to axis titles as demonstrated earlier:

ggplot(chic, aes(x = date, y = temp)) +

geom_point(color = "firebrick") +
labs(x = "Year", y = "Temperature (°F)",
title = "Temperatures in Chicago",

subtitle = "Seasonal pattern of daily temperatures from 1997 to 2001",

33

5 Working with Titles

caption = "Data: NMMAPS",
tag = "Fig. 1")

Fig. 1 _ _
Temperatures in Chicago
Seasonal pattern of daily temperatures from 1997 to 2001
®
0
®
2
e
(]
Q.
S
2L

2001

Data: NMMAPS

5.2 Making Title Bold & Adding a Space at the Baseline

Once again, to adjust the properties of a theme element, we employ the theme () function. Similar to modify-
ing text elements like axis.title and axis. text, we can alter the font face and margin for the title. These
modifications apply not only to the title but also to other labels such as plot.subtitle, plot.caption,
plot.tag, legend.title, legend. text, axis.title, and axis.text.

ggplot(chic, aes(x = date, y = temp)) +

geom_point(color = "firebrick") +
labs(x = "Year", y = "Temperature (°F)",
title = "Temperatures in Chicago") +

theme(plot.title = element_text(face = "bold",
margin = margin(10, 0, 10, 0),
size = 14))

34

5.3 Adjusting Position of Titles

Temperatures in Chicago

75-
o
N
%50- T
a []
— []
)
o
5
[

o
[

3
=

S p AR

3 i

@ Having trouble with Margins?

A helpful mnemonic for remembering the order of the margin sides is “t-r-ou-b-I-¢”.

5.3 Adjusting Position of Titles

The general alignment (left, center, right) is controlled by hjust (horizontal adjustment):

ggplot(chic, aes(x = date, y = temp)) +
geom_point (color "firebrick") +
labs(x = "Year", y = NULL,

title = "Temperatures in Chicago",
caption = "Data: NMMAPS") +

theme(plot.title = element_text(hjust = 1, size = 16, face = "bold.italic"))

35

5 Working with Titles

Temperatures in Chicago

2001

Data: NMMAPS

Certainly, it’s also possible to adjust the vertical alignment, which is controlled by vjust. Since 2019, users
have been able to specify the alignment of the title, subtitle, and caption either based on the panel area (the
default) or the plot margin via plot.title.position and plot.caption.position. The latter is often the
preferred choice from a design perspective, as it yields better results in most cases. Many users have expressed
satisfaction with this new feature, particularly as it addresses issues with alignment, especially when dealing
with very long y-axis labels:

(g <- ggplot(chic, aes(x = date, y = temp)) +

geom_point(color = "firebrick") +

scale_y_continuous(label = function(x) {return(paste(x, "Degrees Fahrenheit"))}) +

labs(x = "Year", y = NULL,
title = "Temperatures in Chicago between 1997 and 2001 in Degrees Fahrenheit",
caption = "Data: NMMAPS") +

theme(plot.title = element_text(size = 14, face = "bold.italic"),
plot.caption = element_text(hjust = 0)))

36

5.3 Adjusting Position of Titles

Temperatures in Chicago between 1997 and 2C

75 Degrees Fahrenheit -

50 Degrees Fahrenheit -

25 Degrees Fahrenheit -

0 Degrees Fahrenheit -

1997 1998 1999 2000 2001
Year

Data: NMMAPS

g + theme(plot.title.position = "plot",
plot.caption.position = "plot")

Temperatures in Chicago between 1997 and 2001 in Degrees F

75 Degrees Fahrenheit -

50 Degrees Fahrenheit -

25 Degrees Fahrenheit -

0 Degrees Fahrenheit - .

1997 1998 1999 2000 2001
Year

Data: NMMAPS

37

5 Working with Titles

5.4 Using a Non-Traditional Font in Your Title

You can incorporate different fonts, not just the default one provided by ggplot (which can vary between
operating systems). Several packages facilitate the usage of fonts installed on your machine, such as the
showtext package, which simplifies the utilization of various font types (TrueType, OpenType, Type 1, web
fonts, etc.) in R plots.

Once the package is loaded, you’ll need to import the desired font, which must also be installed on your device.
I often utilize Google fonts, which can be imported using the font_add_google() function. However, you
can add other fonts using font_add() as well. It’s important to note that even when using Google fonts, you
must install the font and restart RStudio to apply it. if you found any warnings after doing all the steps, or
the fonts aren’t working. Just install extrafont package and run font_import () function to import all the
fonts in your system. and then loadfonts(device = "win", quiet = TRUE) to load the fonts. It’ll work
like a charm. You can also check the available fonts in your system by running fonts().

library(showtext)

library(extrafont)

font_add_google("Playfair Display", ## name of Google font
"Playfair Display") ## name that will be used in R

font_add_google("Bangers", "Bangers")

loadfonts(device = "win", quiet = TRUE)

Now, we can use those font families by theme () function:

ggplot(chic, aes(x = date, y = temp)) +
geom_point(color = "firebrick") +
labs(x = "Year", y = "Temperature (°F)",
title = "Temperatures in Chicago",
subtitle = "Daily temperatures in °F from 1997 to 2001") +
theme(plot.title = element_text(family = "Bangers", hjust = .5, size = 25),
plot.subtitle = element_text(family = "Playfair Display", hjust = .5, size = 15))

38

https://github.com/yixuan/showtext
https://fonts.google.com/

5.5 Adjusting Spacing in Multi-Line Text

Temperatures In Chicago
Daily temperatures in °F from 1997 to 2001

Temperature (°F)

\

1999 2001
Year

You can also establish a non-default font for all text elements of your plots. For more details, refer to the
section “Working with Themes”. In this case, I'll use Roboto Condensed as the new font for all subsequent
plots.

font_add_google("Roboto Condensed", "Roboto Condensed")
theme_set(theme_bw(base_size = 12, base_family = "Roboto Condensed"))

(Previously, this tutorial utilized the {extrafont} package, which performed admirably until last year. How-
ever, suddenly I encountered issues where I couldn’t add any new fonts, and even after acquiring a new laptop,
the package failed to detect any fonts altogether. As an alternative, I typically recommend the {ragg} pack-
age now. However, I encountered difficulties in making it work for my homepage. Therefore, I'm utilizing
the {showtext} package, which is also excellent, albeit with a key distinction: you need to explicitly import
the font you wish to use with {showtext}. Nonetheless, it appears that there are some technical challenges
that are not optimally resolved by {showtext} (as mentioned in this Twitter thread), so you may want to
consider using the package only as a last resort.)

5.5 Adjusting Spacing in Multi-Line Text

To modify the spacing between lines, you can utilize the 1ineheight argument. In the following example,
I've compressed the lines together (lineheight < 1).
ggplot(chic, aes(x = date, y = temp)) +

geom_point(color = "firebrick") +

labs(x = "Year", y = "Temperature (°F)") +

39

https://cran.r-project.org/web/packages/extrafont/README.html
https://ragg.r-lib.org/
https://ragg.r-lib.org/
https://twitter.com/thomasp85/status/1355083725156077571

5 Working with Titles

ggti
them

=

tle("Temperatures in Chicago\nfrom 1997 to 2001") +
e(plot.title = element_text(lineheight = .8, size = 16))

.gif

Now

gepl

40

X ®»

You can Change fonts on the fly!

ot(chic, aes(x = date, y = temp)) +
geom_point(color = "firebrick") +

labs(x = "Year", y = "Temperature (°F)") +
ggtitle("Temperatures in Chicago\nfrom 1997 to 2001") +
theme_bw(base_family = "Berkshire Swash")

5.5 Adjusting Spacing in Multi-Line Text

Temperatures in Chicago
from 1997 to 2001

-
(S
1

501

Temperature (°F)

N
[S2]
1

1999
Year

Or, Change it to Traditional Times New Roman:

ggplot(chic, aes(x = date, y = temp)) +
geom_point(color = "firebrick") +
labs(x = "Year", y = "Temperature (°F)") +
ggtitle("Temperatures in Chicago\nfrom 1997 to 2001") +
theme_bw(base_family = "Times New Roman")

2
th

&

<]
"‘"Qd\""
° [}

41

6 Working with Legends

In this section, we will color code the plot based on the season. Or, to phrase it more in the style of ggplot: we’ll
map the variable season to the aesthetic color. One of the advantages of {ggplot2} is that it automatically

adds a legend when mapping a variable to an aesthetic. As a result, the legend title defaults to what we
specified in the color argument:

ggplot(chic,

aes(x = date, y = temp, color = season)) +
geom_point() +
labs(x = "Year", y = "Temperature (°F)")

75~
o season
o
% 50- © . ® Autumn
g ° ® Spring
‘q—) []
Q ® Summer
5 ' -
2 o5- ® Winter
{]
o- ®
°
19@7
6.1 Disabling the Legend
One of the most common questions is: “How do I remove the legend?”
It’s quite straightforward and always effective with theme (legend.position = "none"):

43

6 Working with Legends

ggplot(chic,

aes(x = date, y = temp, color = season)) +
geom_point () +
labs(x = "Year", y = "Temperature (°F)") +
theme(legend.position = "none"

75 -
(™
<
gso- -
g
3]
o
5
= 25-
g
- ®
[]
1997 1998 1999 2000 2001
Year
You can also utilize guides(color = "none") or scale_color_discrete(guide = "none"), depending on

the specific case. While altering the theme element removes all legends at once, you can selectively remove
specific legends using the latter options while keeping others:

ggplot(chic,
aes(x = date, y = temp,

color = season, shape = season)) +
geom_point () +

labs(x = "Year", y = "Temperature (°F)") +
guides(color = "none"

44

6.2 Eliminating Legend Titles

o
[

- ++
M
++ 4

75- A
P
n =t season
o
N—r
o 50- + 't § ® Autumn
2 ™ A Spri
© pring
5 { |
g_ ® Summer
la_) ?.. + Winter
:g
[J
!]
[

I
©O
]
~
[EnY
©o._
©
oo
[N
©
O
]
N
=
o
o

2001

Here, for example, we retain the legend for the shapes while discarding the one for the colors.

6.2 Eliminating Legend Titles

As we’ve previously learned, utilize element_blank() to render nothing:

ggplot(chic, aes(x = date, y = temp, color = season)) +
geom_point() +
labs(x = "Year", y = "Temperature (°F)") +
theme(legend.title = element_blank())

45

6 Working with Legends

Temperature (°F)

® Autumn
® Spring
® Summer

© Winter

46

@ Other Ways to remove Legend Titles

You can achieve the same outcome by setting the legend name to NULL, either through
scale_color_discrete(name = NULL) or labs(color = NULL).Expand to see examples.

ggplot(chic, aes(x = date, y = temp, color

geom_point() +
labs(x = "Year",
scale_color_discrete(name = NULL)

= season)) +

y = "Temperature (°F)") +

6.2 Eliminating Legend Titles

°
75~
o
< © Autumn
On. ©
%50 | ® Spring
@ L ® Summer
o
£ s © Winter
(]
F 25- %
® °
: |) . 3
o- % - °
1 1 1 1 1
1997 1998 1999 2000 2001
Year
ggplot(chic, aes(x = date, y = temp, color = season)) +
geom_point() +
labs(x = "Year", y = "Temperature (°F)") +
labs(color = NULL)
o
N ©® Autumn
Q
=i ® Spring
@®
o ® Summer
o
g © Winter
|_

47

6 Working with Legends

6.3 Adjusting Legend Position

To relocate the legend from its default position on the right side, you can use the legend.position argument
within theme. Available positions include “top”, “right” (the default), “bottom”, and “left”.

ggplot(chic, aes(x = date, y = temp, color = season)) +
geom_point() +
labs(x = "Year", y = "Temperature (°F)")
theme(legend.position = "top")

b

season © Autumn e Spring © Summer © Winter

Temperature (°F)

2

1 1
1997 1998 1999 2000 2001
Year

You can also position the legend inside the panel by specifying a vector with relative x and y coordinates
ranging from 0 (left or bottom) to 1 (right or top):

ggplot(chic, aes(x = date, y = temp, color = season)) +
geom_point() +
labs(x = "Year", y = "Temperature (°F)",
color = NULL) +
theme(legend.position = c(.15, .15),
legend.background = element_rect(fill = "transparent"))

Warning: A numeric ~legend.position® argument in “theme()® was deprecated in ggplot2
3.5.0.

i Please use the “legend.position.inside” argument of "theme() instead.

43

6.4 Modifying Legend Direction

75 -
o
<
Q50-
=
©
)
o
g ;
= 25- . ¢°
® Autumn ®
& , 3
< ® Spring ® o H
[]
’ ® Summer ‘ o 3
0- > °
“ o Winter
1997 1998 1999 2000 2001

Here, I also override the default white legend background with a transparent fill to ensure the legend doesn’t
obscure any data points.

6.4 Modifying Legend Direction

By default, the legend direction is vertical. However, when you select either the “top” or “bottom” position, it
becomes horizontal. Nevertheless, you can freely switch the direction as desired:

ggplot(chic, aes(x = date, y = temp, color = season)) +
geom_point() +
labs(x = "Year", y = "Temperature (°F)") +
theme(legend.position = c(.5, .97),
legend.background = element_rect(fill = "transparent")) +
guides(color = guide_legend(direction = "horizontal"))

49

6 Working with Legends

season © Autumn © Spring © Summer © Winter

75~

Temperature (°F)

1 1 1 1 1
1997 1998 1999 2000 2001

6.5 Change Style of the Legend Title

You can customize the appearance of the legend title by adjusting the theme element legend. title:

ggplot(chic, aes(x = date, y = temp, color
geom_point() +
labs(x = "Year", y = "Temperature (°F)")
theme(legend.title = element_text(family =

season)) +

SI8

"Playfair Display",
color = "chocolate",
size = 14, face = "bold"))

50

6.6 Modifying Legend Title

m season

<

o ® Autumn
=

o ® Spring
)

o ® Summer
IS

2 © Winter

1997 1998 1999 2000 2001

6.6 Modifying Legend Title

The simplest method to change the title of the legend is through the labs() layer:

ggplot(chic, aes(x = date, y = temp, color = season)) +
geom_point() +
labs(x = "Year", y = "Temperature (°F)",

color = "Seasons\nindicated\nby colors:") +
theme(legend.title = element_text(family = "Playfair Display",
color = "chocolate",

size = 14, face = "bold"))

51

6 Working with Legends

Seasons
T indicated
o by colors:
% ® Autumn
%i ® Spring
E.) ® Summer
© Winter
1957 1958 1599 20b0 20b1
Year
You can adjust the legend details using scale_color_discrete(name = "title") or guides(color

guide_legend("title")):

ggplot(chic, aes(x = date, y = temp, color
geom_point () +
labs(x = "Year", y = "Temperature (°F)")
theme(legend.title = element_text(family = "Playfair Display",

season)) +

b

color = "chocolate",
size = 14, face = "bold")) +
scale_color_discrete(name = "Seasons\nindicated\nby colors:")

52

6.7 Rearrange Order of Legend Keys

Seasons
m indicated
© by colors:
% ® Autumn
gi ® Spring
1=
la_) ® Summer
© Winter
6.7 Rearrange Order of Legend Keys
This can be accomplished by changing the levels of season:
chic$season <-
factor(chic$season,
levels = c("winter", "Spring", "Summer", "Autumn"))

ggplot(chic, aes(x = date, y = temp, color = season)) +
geom_point () +

labs(x = "Year", y = "Temperature (°F)")

53

6 Working with Legends

season
© Winter
® Spring

® Summer

® Autumn

Temperature (°F)

6.8 Modify Legend Labels

To replace the seasons with the months they represent, provide a vector of names in the scale_color_discrete()
call:

ggplot(chic, aes(x = date, y = temp, color = season)) +
geom_point() +
labs(x = "Year", y = "Temperature (°F)") +
scale_color_discrete(

name = "Seasons:",

labels = c("Mar-May", "Jun—Aug", "Sep—Nov", "Dec—Feb")
) +
theme(legend.title = element_text(

family = "Playfair Display", color = "chocolate", size = 14, face = 2
))

54

6.9 Adjust Background Boxes in the Legend

o Seasons:
o ® Mar—May
2

© ® Jun—Aug
()

g. ® Sep—Nov
2 © Dec—Feb

1997 1998 1999 2000 2001

6.9 Adjust Background Boxes in the Legend

To alter the background color (fill) of the legend keys, we modify the setting for the theme element
legend.key:

ggplot(chic, aes(x
geom_point () +
labs(x = "Year", y = "Temperature (°F)") +
theme(legend.key = element_rect(fill = "darkgoldenrodl"),
legend.title = element text(family = "Playfair Display",
color = "chocolate",
size = 14, face = 2)) +

date, y = temp, color = season)) +

scale_color_discrete("Seasons:")

55

6 Working with Legends

[y Seasons:
o Winter
=]

c Spring
©

Qo Summer
=

2 Autumn
If you wish to remove them entirely, use fill = NAor fill = "transparent".

6.10 Adjust Size of Legend Symbols

The default size of points in the legend may cause them to appear too small, especially without boxes. To
modify this, you can again use the guides layer as follows:

ggplot(chic, aes(x
geom_point() +
labs(x = "Year", y = "Temperature (°F)") +
theme (legend.key = element_rect(fill = NA),
legend.title = element_text(color = "chocolate",
size = 14, face = 2)) +
scale_color_discrete("Seasons:") +
guides(color = guide_legend(override.aes = list(size = 6)))

date, y = temp, color = season)) +

56

6.11 Exclude a Layer from the Legend

Seasons:

Temperature (°F)

6.11 Exclude a Layer from the Legend

Suppose you have two different geometric layers mapped to the same variable, such as color being used as

an aesthetic for both a point layer and a rug layer of the same data. By default, both the points and the “line”
end up in the legend like this:

ggplot(chic, aes(x = date, y = temp, color = season)) +
geom_point() +

labs(x = "Year", y = "Temperature (°F)") +
geom_rug()

57

6 Working with Legends

— °
=
]
=
758
(™ I season
o
g 50_. —o— Winter
= .
g I —e— Spring
g_ I —o— Summer
@)
2 o5 ~o— Autumn
]
=
=
= 3
0= .
[NN 42 a0 .
1997 1998 1999 2000 2001
Year
You can utilize show. legend = FALSE to exclude a layer from the legend:
ggplot(chic, aes(x = date, y = temp, color = season)) +
geom_point () +
labs(x = "Year", y = "Temperature (°F)") +
geom_rug (show.legend = FALSE)
=
i
|}
750
o I season
o
o 50_. ® Winter
3 -
= I ® Spring
qg. I ® Summer
e 25 @ Autumn
=
=
=
0=
1997 1998 1999 2000 2001

Year

58

6.12 Manually Adding Legend Items

6.12 Manually Adding Legend Items

By default, {ggplot2} won’t add a legend unless you map aesthetics (color, size, etc.) to a variable. However,
there are occasions where you may want to include a legend for clarity.

Here’s the default behavior:

ggplot(chic, aes(x = date, y = 03)) +

geom_line(color = "gray") +
geom_point(color = "darkorange2") +
labs(x = "Year", y = "Ozone")

40-
()
c
o
N
@)

20-

0 -

1 1 1 1 1
1997 1998 1999 2000 2001
Year

To force a legend, we can map a guide to a variable. Here, we’re mapping the lines and the points using aes (),
but we’re not mapping to a variable in our dataset. Instead, we’re using a single string for each, ensuring we
get just one color for each.

ggplot(chic, aes(x = date, y = 03)) +

geom_line(aes(color = "line")) +
geom_point(aes(color = "points")) +
labs(x = "Year", y = "Ozone") +

scale_color_discrete("Type:")

59

6

Ozone

Working with Legends

w0- |
M eP ,
N R : 3 Type:
“holt " S
SV line
pE '
I [/ e 1 o ® points
20- / t
g
|
“‘I l H[\ Iy
.l ' o«
0-
1997 1998 1999 2000 2001

We’re getting close, but this is not what we want. We desire gray lines and red points. To change the colors, we
use scale_color_manual (). Additionally, we override the legend aesthetics using the guide () function.

Now, we have a plot with gray lines and red points, as well as a single gray line and a single red point as
legend symbols.

ggplot(chic, aes(x = date, y = 03)) +

60

geom_line(aes(color = "line")) +
geom_point (aes(color = "points")) +
labs(x = "Year", y = "Ozone") +

scale_color_manual (name = NULL,
guide = "legend",
values = c("points" = "darkorange2",
"line" = "gray")) +
guides(color = guide_legend(override.aes = list(linetype = c(1, 0),
shape = c(NA, 16))))

6.13 Use Other Legend Styles

40-
w g . .
| q. — line
5 [K .
o ‘ \I ‘ ‘u! . “,‘ . ® points
20- YRRt (I‘ v
: vy o e I ,“ 3.
trllll : |‘| ! ‘ il e
G "i
,l
o-
1997 1998 1999 2000 2001

Year

6.13 Use Other Legend Styles

The default legend for categorical variables such as season is a guide_legend(), as you have seen in several
previous examples. However, if you map a continuous variable to an aesthetic, {ggplot2} will by default not
use guide_legend() but guide_colorbar() (or guide_colourbar()).

ggplot(chic,
aes(x = date, y = temp, color = temp)) +
geom_point () +
labs(x = "Year", y = "Temperature (°F)", color = "Temperature (°F)")

61

6 Working with Legends

75-
- Temperature (°F)
LL
<
75
Qs50- ®,
= °
« 1 50
(]
3 25
o 8
F 25-
0
i) 3
0- ! : °
1997 1998 1999 2000 2001
Year

However, by using guide_legend(), you can force the legend to display discrete colors for a given number
of breaks as in the case of a categorical variable:

ggplot(chic,

aes(x = date, y = temp, color = temp)) +
geom_point() +

labs(x = "Year", y = "Temperature (°F)", color = "Temperature (°F)") +
guides(color = guide_legend())

[y Temperature (°F)
o

g a0

=]

= e 25

g e 50

5

Q@ o 75

1997 1998 1999 2000 2001
Year

62

6.13 Use Other Legend Styles

You can also utilize binned scales:

ggplot(chic,

aes(x = date, y = temp, color = temp)) +
geom_point() +
labs(x = "Year", y = "Temperature (°F)", color = "Temperature (°F)") +
guides(color = guide_bins())

Temperature (°F)

R °

e 0

(])

5 25

ﬁ [}

= 50

S .

GE) 75
[]

= 100
[]

1 1 1 1 1
1997 1998 1999 2000 2001

... or binned scales as discrete colorbars:

ggplot(chic,
aes(x = date, y = temp, color = temp)) +
geom_point() +

labs(x = "Year", y = "Temperature (°F)", color = "Temperature (°F)") +
guides(color = guide_colorsteps())

63

6 Working with Legends

Temperature (°F)

100
75
50
25
0

Temperature (°F)

1997 1998 1999 2000 2001

64

7 Working with Backgrounds & Grid Lines

To modify the overall appearance of your plot, you can use various functions. While altering the entire theme
of your plot is one option (covered in detail in the “Working with Themes” section below), you can also make
specific changes to individual elements such as backgrounds and grid lines.

7.1 Change the Panel Background Color

You can adjust the background color (fill) of the panel area (where the data is plotted) by modifying the theme
element panel .background:

ggplot(chic, aes(x = date, y = temp)) +
geom_point(color = "#1D8565", size = 2) +
labs(x = "Year", y = "Temperature (°F)") +
theme (panel.background = element_rect(

fill = "#64D2AA", color = "#64D2AA", linewidth = 2)
)

75

Temperature (°F)
(&)
o

J_1.

o

1997 1998 1999 2000 2001
Year

65

7 Working with Backgrounds & Grid Lines

Keep in mind that the true color — the outline of the panel background — didn’t change despite our specifi-
cation. This is because there’s a layer on top of panel.background, namely panel.border. However, it’s
important to use a transparent fill here; otherwise, your data will be hidden behind this layer. In the following
example, I illustrate this by using a semitransparent hex color for the fill argument in element_rect:

ggplot(chic, aes(x = date, y = temp)) +
geom_point(color = "#1D8565", size = 2) +
labs(x = "Year", y = "Temperature (°F)") +
theme (panel.border = element_rect(
fill = "#64D2AA99", color = "#64D2AA", linewidth = 2)

75
—~
LL
e
Q50
2
o
(]
o
5
~ 25

0

1997 1998 1999 2000 2001
Year

7.2 Change Grid Lines

There are two types of grid lines: major grid lines indicating the ticks and minor grid lines between the
major ones. You can customize both by overwriting the defaults for panel.grid or for each set of gridlines
separately, panel.grid.major and panel.grid.minor.

ggplot(chic, aes(x = date, y = temp)) +
geom_point(color = "firebrick") +
labs(x = "Year", y = "Temperature (°F)") +
theme(panel.grid.major = element_line(color
panel.grid.minor = element_line(color

"grayl0", linewidth
"gray70", linewidth

5)’
.25))

66

7.2 Change Grid Lines

Temperature (°F)

1997 1998 1999 2000 2001
Year

You can even specify settings for all four different levels of grid lines: major horizontal, major vertical, minor
horizontal, and minor vertical.

ggplot(chic, aes(x = date, y = temp)) +
geom_point(color = "firebrick") +
labs(x = "Year", y = "Temperature (°F)") +
theme(panel.grid.major = element_ line(linewidth = .5, linetype = "dashed"),
panel.grid.minor = element_line(linewidth = .25, linetype = "dotted"),

panel.grid.major.x = element_line(color = "redl"),
panel.grid.major.y = element_line(color = "bluel"),
panel.grid.minor.x = element_line(color = "red4"),
panel.grid.minor.y = element_line(color = "blue4"))

67

7 Working with Backgrounds & Grid Lines

75— - - - - S - - - -G PR - - - -

L I

~ 1

S 50—-*

<§ é

Q) [EPTURTRTRNN ¢ T .= JOUURUREIRRS - Y SN USRS A
Q.

SO

F 25— - --i---

And, of course, you can remove some or all grid lines if you like. For instance, to remove all grid lines, you
can set panel.grid = element_blank(). Alternatively, you can remove only major or minor grid lines by
specifying panel.grid.major or panel.grid.minor accordingly and setting them to element_blank().

ggplot(chic, aes(x = date, y = temp)) +
geom_point (color

"firebrick") +

labs(x = "Year", y = "Temperature (°F)") +
theme(panel.grid.minor = element_blank())

Temperature (°F)

68

7.3 Change Spacing of Gridlines

ggplot(chic, aes(x = date, y = temp)) +
"firebrick") +

= "Temperature (°F)") +
element_blank())

geom_point(color
labs(x = "Year",

I <

theme(panel.grid

Temperature (°F)

7.3 Change Spacing of Gridlines

Furthermore, you can also define the breaks between both major and minor grid lines by specifying the breaks
argument.

ggplot(chic, aes(x = date, y = temp)) +
geom_point(color = "firebrick") +
labs(x = "Year", y = "Temperature (°F)") +
scale_y_continuous(breaks = seq(0, 100, 10),
minor_breaks = seq(0, 100, 2.5))

69

7 Working with Backgrounds & Grid Lines

90 -
80 -
70 -
i 60-
o
®50-
=
©
5 40-
£ !
30-
L
20-
10 - o‘
0- .
1997 1998 1999 2000 2001
Year

7.4 Change the Plot Background Color

Similarly, to change the background color (fill) of the plot area, you can modify the theme element

plot.background using the theme() function. This allows you to customize the appearance of the entire
plot area according to your preferences.

ggplot(chic, aes(x = date, y = temp)) +
geom_point(color = "firebrick") +
labs(x = "Year", y = "Temperature (°F)") +
theme(plot.background = element_rect(fill = "gray60",
color = "gray30", linewidth = 2))

70

7.4 Change the Plot Background Color

You can achieve a unique background color by either setting the same colors in both panel.background and
plot.background or by setting the background filling of the panel to "transparent" or NA. This customiza-
tion can help you create visually appealing plots that match your design preferences.

ggplot(chic, aes(x = date, y = temp)) +
geom_point(color = "firebrick") +
labs(x = "Year", y = "Temperature (°F)") +
theme (panel.background = element_rect(fill = NA),
plot.background = element_rect(fill = "gray60",
color = "gray30", linewidth = 2))

71

7 Working with Backgrounds & Grid Lines

72

8 Working with Margins

Sometimes it is useful to add a little space to the plot margin. Similar to the previous examples, we can use an
argument to the theme () function. In this case, the argument is plot.margin. As illustrated in the previous
example where we changed the background color using plot.background, we can now add extra space to
both the left and right.

The plot.margin argument can handle a variety of different units (cm, inches, etc.), but it requires the use of
the unit function from the package grid to specify the units. You can either provide the same value for all
sides (easiest via rep(x, 4)) or particular distances for each. Here, I am using a 1cm margin on the top and
bottom, 3 cm margin on the right, and an 8 cm margin on the left.

date, y = temp)) +
"firebrick") +

gegplot(chic, aes(x
geom_point (color

labs(x = "Year", y = "Temperature (°F)") +
theme(plot.background = element_rect(fill = "gray60"),
plot.margin = margin(t = 1, r = 3, b =1, 1 = 8, unit = "cm"))

73

Working with Margins

! Having trouble with Margins?

A helpful mnemonic for remembering the order of the margin sides is “t-r-ou-b-I-¢”.

@ unit() instead of margin()

You can also use unit () instead of margin().

ggplot(chic, aes(x = date, y = temp)) +
geom_point(color = "firebrick") +
labs(x = "Year", y = "Temperature (°F)") +
theme(plot.background = element_rect(fill = "gray60"),
plot.margin = unit(c(1, 3, 1, 8), "cm"))

74

9 Working with Multi-Panel Plots

The {ggplot2} package offers two handy functions for creating multi-panel plots, called facets. They are
related but have slight differences: facet_wrap creates a ribbon of plots based on a single variable, while
facet_grid spans a grid of plots based on two variables.

9.1 Create a Grid of Small Multiples Based on Two Variables

When dealing with two variables, facet _grid is the appropriate choice. In this function, the order of the
variables determines the number of rows and columns in the grid:

ggplot(chic, aes(x = date, y = temp)) +
geom_point(color = "orangered", alpha = .3) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
labs(x = "Year", y = "Temperature (°F)") +
facet_grid(year ~ season)

Autumn Spring Summer Winter

fie e

-

L66T

-
866T

Temperature (°F)
o~ N 01~ N 01~ N 01~
OUl OUIOoOUl OUTOo 01T O uU1o O

xR
P
B]
B
.
W
0002 666T

To switch from a row-based arrangement to a column-based one, you can modify facet_grid(year ~
season) to facet_grid(season ~ year).

75

9 Working with Multi-Panel Plots

9.2 Create Small Multiples Based on One Variable

facet_wrap creates a facet of a single variable, specified with a tilde in front: facet_wrap(~ variable). The
appearance of these subplots is determined by the arguments ncol and nrow:

g <-
ggplot(chic, aes(x = date, y = temp)) +
geom_point(color = "chartreuse4", alpha = .3) +
labs(x = "Year", y = "Temperature (°F)") +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))

g + facet_wrap(~ year)

1997 1998

~
(63}
1

N a1
o1 o
[[

o
1
®

1999 2000

Temperature (°F)
\‘
1

a1
o
[

1 1 1
>) QO S QA >) Q N
S o)) Q O O o) (o) Q Q
S I S S - - T N
Year

Accordingly, you can arrange the plots as you like, instead as a matrix in one row...

76

9.2 Create Small Multiples Based on One Variable

g + facet_wrap(~ year, nrow = 1)

1997 1998 1999 2000

75-
(™
o
TR
50
©
(]
o
5
A
(0]
L
0-8
Qo
A
o) Oy
AN

... or even as a asymmetric grid of plots:

g + facet_wrap(~ year, ncol = 3) + theme(axis.title.x = element_text(hjust = .15))
1997 1998 1999
75-

50- %

N
a1
[

o
'
<

2000 \9@« RSO

Temperature (°F)
\‘
(&)

Year

77

9 Working with Multi-Panel Plots

9.3 Allow Axes to Roam Free

The default for multi-panel plots in {ggplot2} is to use equivalent scales in each panel. But sometimes you
want to allow a panels own data to determine the scale. This is often not a good idea since it may give your

user the wrong impression about the data. But sometimes it is indeed useful and to do this you can set scales
= "free":

g + facet_wrap(~ year, nrow = 2, scales = "free")

Temperature (°F)

75-

Note that both, x and y axes differ in their range!

9.3.0.1 Use facet_wrap with Two Variables

The function facet_wrap can also take two variables:

g + facet_wrap(year ~ season, nrow = 4, scales = "free_x")

78

9.3 Allow Axes to Roam Free

1997

1997 1997
Autumn Summer Winter
75 - .) %n@ R
50-5% ? N $ s ondy
. W Wy %o%%‘@é
0 i 1 1 1 1 1 1 1 @ - 1 1 1
X Q X 3 N
F OQ’O v\p %Q,Q P ((59 I R
1998 1998 1998 1998
Autumn Spring Summer Winter

[J
0 i 1 1 1 1 1 1 1 1 1 1 1 1
1999 1999 1999 1999
Autumn Spring Summer Winter

Temperature (°F)

N 3 S $
F & F AR @ SO S @R
2000 2000 2000 2000
Autumn Spring Summer Winter
7579 o £ aijam FANNTLs
- @ °
50- e " ¥ . ety
25- ¥ w r
0 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Oc’ %04 OQ;O 3'&0?@ @'b\'\ 3\)0 '50 '50 \)q @Q'Q oés’bo Qéuo @é ?Q\

When using facet_wrap you are still able to control the grid design: you can rearrange the number of plots
per row and column and you can also let all axes roam free. In contrast, facet_grid will also take a free

argument but will only let it roam free per column or row:

g + facet_grid(year ~ season, scales = "free_x")

79

9 Working with Multi-Panel Plots

Autumn Spring Summer Winter
75- ‘
! . ~
50 - S 2
§ £
25-
0- ¢

o ~
o a
e
ol
OB 0 0
866T

Temperature (°F)
\l
[6)]

0
o
666T

N
o1
[

75~

50-

000¢

L |

O ® & K O O
& & &L LS
IS S SN A

9.4 Modify Style of Strip Texts

By using theme, you can modify the appearance of the strip text (i.e. the title for each facet) and the strip text
boxes:

80

9.4 Modify Style of Strip Texts

g + facet_wrap(~ year, nrow = 1, scales = "free_x") +

theme(strip.text = element_text(face = "bold", color = "chartreuse4",

hjust = 0, size = 20),
strip.background = element_rect(fill = "chartreuse3", linetype = "dotted"))

o
< e
o
=
o
S
£ i
(]
= g
@
Q@
6]
)
09,\9
SQS\ ?§ S v 3'&0

The following two functions adapted from this answer by Claus Wilke, the author of the {ggtext} package,
allow to highlight specific labels in combination with element_textbox() that is provided by {ggtext}.

library(ggtext)
library(purrr) ## for %/ |%

element_textbox_highlight <- function(..., hi.labels = NULL, hi.fill = NULL,

hi.col = NULL, hi.box.col = NULL, hi.family = NULL) {
structure(

c(element_textbox(...),

list(hi.labels = hi.labels, hi.fill = hi.fill, hi.col = hi.col, hi.box.col = hi.box.col, hi.fami

)
class = c("element_textbox_highlight", "element_textbox", "element_text", "element")
)
}
element_grob.element_textbox_highlight <- function(element, label = "", ...) {

if (label %in% element$hi.labels) {
element$fill <- element$hi.fill %||% element$fill
element$colour <- element$hi.col %||% element$colour
element$box.colour <- element$hi.box.col %||% element$box.colour

81

https://stackoverflow.com/questions/60332202/conditionally-fill-ggtext-text-boxes-in-facet-wrap
https://wilkelab.org/ggtext/

9 Working with Multi-Panel Plots

element$family <- element$hi.family %||% element$family

}

NextMethod ()

Now you can use it and specify for example all striptexts:

g + facet_wrap(year ~ season, nrow = 4, scales = "free_x") +

theme (

strip.background = element_blank(),
strip.text = element_textbox_highlight (

family

fill

halign = .5, linetype =1, r =

= "Playfair Display", size = 12, face = "bold",
= "white", box.color = "chartreuse4",
unit (5,

padding = margin(5, 0, 3, 0), margin = margin(0, 1, 3, 1),
hi.labels = c("1997", "1998", "1999", "2000"),

hi.fill = "chartreuse4", hi.box.col = "black", hi.col = "white"

Warning in grid.Call(C_textBounds, as.

width unknown for character 0x41

Warning in grid.Call(C_textBounds, as.

width unknown for character 0x41

Warning in
font width
Warning in
font width
Warning in
font width
Warning in
font width

82

grid.Call.graphics(C_text,
unknown for character 0x41
grid.Call.graphics(C_text,
unknown for character 0x41
grid.Call.graphics(C_text,
unknown for character 0x41
grid.Call.graphics(C_text,
unknown for character 0x41

graphicsAnnot (x$label), x$x, x$y,

graphicsAnnot (x$label), x$x, x$y,

as

as

as

as

.graphicsAnnot (x$label),
.graphicsAnnot(x$label),
.graphicsAnnot(x$label),

.graphicsAnnot(x$label),

x$X,

x$X,

x$x,

x$x,

color = "chartreuse4",
"pt"), width = unit(1,

x$y,
x$y,
x$y,

x$y,

anCH) s

: font

: font

Temperature (°F)

9.4 Modify Style of Strip Texts

1997 1997 1997 1997

(Atumn](Spring)(Summer](Winter]

(Atumn J (Spring) (Summer J (Winter J
75- :

?Q& @‘b% »5\30 30 30 QQ QJQ o ')'b' QQ? @'b' v’Q

2000 2000 2000 2000

(Atumn](Spring)(Summer](Winter]

58 @Wﬁ .

50- %B%OO %%gﬁﬁ %90

25- ‘ % W %%ﬁ @gg&?
0 -

e

W @ P R Py

X\ A
o
Year

83

9 Working with Multi-Panel Plots

ggplot(chic, aes(x = date, y = temp)) +
geom_point(aes(color = season == "Summer"), alpha = .3) +
labs(x = "Year", y = "Temperature (°F)") +
facet_wrap(~ season, nrow = 1) +
scale_color_manual(values = c("gray40", "firebrick"), guide = "none") +
theme (
axis.text.x = element_text(angle = 45, vjust
strip.background = element_blank(),
strip.text = element_textbox_highlight (
size = 12, face = "bold",
fill = "white", box.color = "white", color = "gray40",
halign = .5, linetype = 1, r = unit(0, "pt"), width = unit(1, "npc"),
padding = margin(2, 0, 1, 0), margin = margin(0, 1, 3, 1),
hi.labels = "Summer", hi.family = "Bangers",
hi.fill = "firebrick", hi.box.col = "firebrick", hi.col = "white"

1, hjust = 1),

)
Autumn Spring Summer Winter
(0]
g8 o "
75- ; - g q .
— ® ®
@ —
QLI_-/ L g g o é o
[} p) ()8 % N
5 50- @ @ ‘8 C
2 » -
© g \
o ° H
5 : ’ <
£ & 8§ 3 §
o 8 3 : ° g o
0- (%) P g
S PSS LSS PSS LSS
TR R T QORYT RDT RT qDT OTRYT T RDT qDT TRT RDT RDT DT f
Year

9.5 Create a Panel of Different Plots

There are several ways how plots can be combined. The easiest approach in my opinion is the {patchwork}
package by Thomas Lin Pedersen:

84

https://github.com/thomasp85/patchwork
https://github.com/thomasp85/patchwork

9.5 Create a Panel of Different Plots

pl <- ggplot(chic, aes(x = date, y = temp,
color = season)) +
geom_point() +
geom_rug() +
labs(x = "Year", y = "Temperature (°F)")

p2 <- ggplot(chic, aes(x = date, y = 03)) +

geom_line(color = "gray") +

geom_point(color = "darkorange2") +

labs(x = "Year", y = "Ozone")
library(patchwork)

pl + p2

5
]
n
754
o season
o
[0} ~o— Autumn
2 oo ™
< —e— Spring E’,
qé_ —o— Summer O
@ o5 o~ Winter
0
[]
1997 1998 1999 2000 2001 1997 1998 1999 2000 2001
Year Year

We can change the order by “dividing” both plots (and note the alignment even though one has a legend and
one doesn’t!):

pl / p2

85

9 Working with Multi-Panel Plots

=
]
|}
758
E\ I
e
508
>
g [
(]
o
5
F 25
=
|}
|}
=
0=
1997 1998 1999
Year
40 -
|
2
o (m
N g
8 t]
20- e I
) I, i|
q| “ru
”I |F
e L A S
'
0_
1 1 1
1997 1998 1999
Year

And also nested plots are possible!

86

2000

1
2000

1
2001

season

~o— Autumn
—e— Spring
—o— Summer
-

Winter

9.5 Create a Panel of Different Plots

(g +p2) / p1

75~

a1

o
[
(<]

Temperature (°F)
Ozone

1997 1998 1999 2000 2001

Year

i season
<
o —o— Autumn
-]
= —o— Spring
o
g_ —o— Summer
lﬂ_J —o— Winter

&

[]

1997 1998 1999 2000 2001
Year

(Note the alignment of the plots even though only one plot includes a legend.)

Alternatively, the {cowplot} package by Claus Wilke provides the functionality to combine multiple plots
(and lots of other good utilities):

library(cowplot)

Attaching package: 'cowplot'

The following object is masked from 'package:patchwork':

87

https://wilkelab.org/cowplot/articles/introduction.html

9 Working with Multi-Panel Plots

align_plots

The following object is masked from 'package:lubridate':

stamp

plot_grid(plot_grid(g, pl), p2, ncol = 1)

(T season
75

() ~o— Autumn
=

‘é 50 —o— Spring
aé-)_ZS —&— Summer
2 o ~e~ Winter

199719981992002001
Year

1997 1998 1999 2000 2001
Year

... and so does the {gridExtra} package as well:

library(gridExtra)

Attaching package: 'gridExtra'

The following object is masked from 'package:dplyr':

combine

grid.arrange(g, pl, p2,
layout_matrix = rbind(c(1l, 2), c(3, 3)))

88

https://cran.r-project.org/web/packages/gridExtra/vignettes/arrangeGrob.html

9.5 Create a Panel of Different Plots

i season
75
o —o— Autumn
-]
§ 50 —e— Spring
qé-).ZS —e— Summer
2 o ~o— Winter

199719981992200001

Year

The same idea of defining a layout can be used with {patchwork} which allows creating complex composi-
tions:

layout <- "
AABBBB#
AACCDDE
##CCDD#
HHCCHHH#

p2 + pl + pl + g + p2 +
plot_layout(design = layout)

89

9 Working with Multi-Panel Plots

Temperature (°F)

Ozone

1999 2000 2001

Year

1998

1997

Temperature (°F)

!
1
i
{
?

1997 1998 1999

Year

2000 2001

90

1999
Year

season

o

—-
-
-

Autumn
Spring
Summer

Winter

Temperature (°F)

0-
°
A ® o S >
) S) S $
N N N o »
Year

season

—o— Autumn
~e— Spring
—®— Summer
—-

Winter

Ozone

o
19971998199200001
Year

10 Working with Colors

For simple applications working with colors is straightforward in {ggplot2}. For a more advanced treatment
of the topic you should probably get your hands on Hadley’s book which has nice coverage. Other good
sources are the R Cookbook and the ‘color section in the R Graph Gallery by Yan Holtz.

There are two main differences when it comes to colors in {ggplot2}. Both arguments, color and fill, can
be

1. specified as single color or
2. assigned to variables.

As you have already seen in the beginning of this tutorial, variables that are inside the aesthetics are en-
coded by variables and those that are outside are properties that are unrelated to the variables. This complete
nonsense plot showing the number of records per year and season illustrates that fact:

ggplot(chic, aes(year)) +
geom_bar(aes(fill = season), color = "grey", linewidth = 2) +
labs(x = "Year", y = "Observations", fill = "Season:")

300-
o Season:
c
=]
s 200-
°
)
2 . Summer
o . Winter

100 -

0 -
1997 1998 1999 2000
Year

91

http://www.springer.com/de/book/9780387981413#otherversion=9780387981406
http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/
https://www.r-graph-gallery.com/ggplot2-color.html

10 Working with Colors

10.1 Specify Single Colors

Static, single colors are simple to use. We can specify a single color for a geom:

ggplot(chic, aes(x = date, y = temp)) +
geom_point (color "steelblue", size =
labs(x = "Year", y = "Temperature (°F)'

2) +
")

Temperature (°F)

... and in case it provides both, a color (outline color) and a £i11 (filling color):

ggplot(chic, aes(x = date, y = temp)) +
geom_point (shape = 21, size = 2, stroke = 1,
color "#3cc08f", fill = "#c08f3c") +
labs(x = "Year", y = "Temperature (°F)")

92

10.2 Assign Colors to Variables

Temperature (°F)

k

1999 2000 2001
Year

Tian Zheng at Columbia has created a useful PDF of R colors. Of course, you can also specify hex color codes

(simply as strings as in the example above) as well as RGB or RGBA values (via the rgb () function: rgb(red,
green, blue, alpha)).

10.2 Assign Colors to Variables

In {ggplot2}, colors that are assigned to variables are modified via the scale_color_* and the scale_fill_*
functions. In order to use color with your data, most importantly you need to know if you are dealing with
a categorical or continuous variable. The color palette should be chosen depending on type of the variable,

with sequential or diverging color palettes being used for continuous variables and qualitative color palettes
for categorical variables:

10.3 Qualitative Variables

Qualitative or categorical variables represent types of data which can be divided into groups (categories).
The variable can be further specified as nominal, ordinal, and binary (dichotomous). Examples of qualita-
tive/categorical variables are:

The default categorical color palette looks like this:
(ga <- ggplot(chic, aes(x = date, y = temp, color = season)) +

geom_point () +
labs(x = "Year", y = "Temperature (°F)", color = NULL))

93

http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf

10 Working with Colors

® Autumn
® Spring
® Summer

© Winter

Temperature (°F)

10.3.1 Manually Select Qualitative Colors

You can pick your own set of colors and assign them to a categorical variables via the function
scale_*_manual() (the * can be either color, colour, or fill). The number of specified colors has
to match the number of categories:

ga + scale_color_manual(values = c("dodgerblue4",
"darkolivegreen4",
"darkorchid3",
"goldenrodl"))

94

10.3 Qualitative Variables

75-
o
N e Autumn
Q -
= 50 ® Spring
©
o ® Summer
o
aE) Winter
= 25-

0-

10.3.2 Use Built-In Qualitative Color Palettes

The ColorBrewer palettes is a popular online tool for selecting color schemes for maps. The different sets of
colors have been designed to produce attractive color schemes of similar appearance ranging from three to

twelve. Those palettes are available as built-in functions in the {ggplot2} package and can be applied by
calling scale_*_brewer():

ga + scale_color_brewer(palette = "Setl")

95

http://colorbrewer2.org/

10 Working with Colors

75-
o
) ® Autumn
O ©
= 50 ° ® Spring
dc-ua []
g o ® Summer
e 1 ® Winter
® 25-
o- ®
°
1997
iNote

You can explore all schemes available via RColorBrewer: :display.brewer.all().

10.3.3 Use Qualitative Color Palettes from Extension Packages

There are many extension packages that provide additional color palettes. Their use differs depending on the
way the package is designed. For an extensive overview of color palettes available in R, check the collection
provided by Emil Hvitfeldt. One can also use his {paletteer} package, a comprehensive collection of color
palettes in R that uses a consistent syntax.

Examples:

The {ggthemes} package for example lets R users access the Tableau colors. Tableau is a famous visualiztion
software with a well-known color palette.

library(ggthemes)
ga + scale_color_tableau()

96

https://github.com/EmilHvitfeldt/r-color-palettes/blob/master/README.md#comprehensive-list-of-color-palettes-in-r
https://github.com/EmilHvitfeldt/r-color-palettes/blob/master/README.md#comprehensive-list-of-color-palettes-in-r
https://github.com/EmilHvitfeldt/paletteer
https://jrnold.github.io/ggthemes/
http://www.tableau.com/de-de/about/blog/2016/7/colors-upgrade-tableau-10-56782

10.3 Qualitative Variables

75-
o
< ® Autumn
On @
5 50 o © Spring
4‘-0' []
o b ® Summer
o
€ 1 © Winter
@)
= 25-
o
o- ©
°
1997 1998 1999 2000 2001

The {ggsci} package provides scientific journal and sci-fi themed color palettes. Want to have a plot with
colors that look like being published in Science or Nature? Here you go!

library(ggsci)
gl <- ga + scale_color_aaas()
g2 <- ga + scale_color_npg()

library(patchwork)
(g1 + g2) * theme(legend.position = "top")

® Autumn @ Spring © Summer © Winter ® Autumn © Spring © Summer © Winter

Temperature (°F)
Temperature (°F)

1997 1998 1999 2000 2001
Year

97

https://nanx.me/ggsci/articles/ggsci.html

10 Working with Colors

10.4 Quantitative Variables

Quantitative variables represent a measurable quantity and are thus numerical. Quantitative data can be
further classified as being either continuous (floating numbers possible) or discrete (integers only):

In our example we will change the variable we want to color to ozone, a continuous variable that is strongly re-
lated to temperature (higher temperature = higher ozone). The function scale_x_gradient () is a sequential
gradient while scale_*_gradient2() is diverging.

Here is the default {ggplot2} sequential color scheme for continuous variables:
gb <- ggplot(chic, aes(x = date, y = temp, color = temp)) +
geom_point() +

labs(x = "Year", y = "Temperature (°F)", color = "Temperature (°F):")

gb + scale_color_continuous()

75-
- Temperature (°F):
LL
I
75
9 50' ..
2 °
@ 1 50
(]
% 25
o 8
= 25-
0
o- &
[]
1 1 1 1 1
1997 1998 1999 2000 2001

Year

This code produces the same plot:

gb + scale_color_gradient()

And here is the diverging default color scheme:
mid <- mean(chic$temp) ## midpoint

gb + scale_color_gradient2(midpoint = mid)

98

10.4 Quantitative Variables

b &k b oa

Temperature (°F):
L "

50

I25
0

Temperature (°F)
al
o

..-.e

o
[

&
- g
[

¢

1997 1998 1999 2000 2001
Year

o VoY

10.4.1 Manually Set a Sequential Color Scheme

You can manually set gradually changing color palettes for continuous variables via scale_*_gradient():

gb + scale_color_gradient(low = "darkkhaki",
high = "darkgreen")

Temperature (°F):

o

=

v 75
=]

© 50
5]

Q.

S 25
@

0

1997 1998 1999 2000 2001
Year

99

10 Working with Colors

Temperature data is normally distributed so how about a diverging color scheme (rather than sequential)...
For diverging color you can use the scale_*_gradient2() function:

gb + scale_color_gradient2(midpoint = mid, low = "#dd8aOb",
mid = "grey92", high = "#32a676")

75-
. Temperature (°F):
LL
e
75
Q 50-
2
© 50
(O]
Q.
(S 25
(]
F 25-
= 0
0-
[J
1997 1998 1999 2000 2001

Year

10.4.2 The Beautiful Viridis Color Palette

The viridis color palettes do not only make your plots look pretty and good to perceive but also easier to read
by those with colorblindness and print well in gray scale. You can test how your plots might appear under
various form of colorblindness using {dichromat} package.

And they also come now shipped with {ggplot2}! The following multi-panel plot illustrates three out of the
four viridis palettes:

pl <- gb + scale_color_viridis_c() + ggtitle("'viridis' (default)")

p2 <- gb + scale_color_viridis_c(option = "inferno") + ggtitle("'inferno'")
p3 <- gb + scale_color_viridis_c(option = "plasma") + ggtitle("'plasma'")
p4 <- gb + scale_color_viridis_c(option = "cividis") + ggtitle("'cividis'")
library(patchwork)

(p1l + p2 + p3 + p4) * theme(legend.position = "bottom")

100

https://sjmgarnier.github.io/viridis/articles/intro-to-viridis.html
https://cran.r-project.org/web/packages/dichromat/index.html

10.4 Quantitative Variables

'viridis' (default) 'inferno’

o " e
o Kl
3 El 50- °
g g
[} Q
Q o
£ £ 25-
& &
ol
19‘98 19I99
Year
Temperature (°F): _ Temperature (°F): _
0 25 50 75 0 25 50 75
'plasma’ ‘cividis'
o E.I:75-
Kl Fl :
& 1 £ ¢
Q [}
[=8 (=N
£ £ 25-
2 @
° 0-
2001 1999
Year
Temperature (°F): H Temperature (°F): “
0 25 50 75 0 25 50 75
It is also possible to use the viridis color palettes for discrete variables:
ga + scale_color_viridis_d(guide = "none")
°
75-
—~~]
LL
o
N—r
Q50-
=
©
S
)
Q
5
= 25- ‘°
% *
. i
3
0- °
1 1 1 1 1
1997 1998 1999 2000 2001

Year

101

10 Working with Colors

10.4.3 Use Quantitative Color Palettes from Extension Packages

The many extension packages provide not only additional categorical color palettes but also sequential, di-

verging and even cyclical palettes. Again, I point you to the great collection provided by Emil Hvitfeldt for
an overview.

Examples:

The {rcartocolors} packages ports the beautiful CARTOcolors to {ggplot2} and contains several of my
most-used palettes:

library(rcartocolor)
gl <- gb + scale_color_carto_c(palette
g2 <- gb + scale_color_carto_c(palette

"Burgyl")
"Earth")

(g1 + g2) * theme(legend.position = "bottom")

75-

>
B
o
E

— —
o [
N N9
() ()
5 50- 5 50-
© ©
[[
£ g
g 25- S 25-
K = (" Qe { (]
< 3 &
i)
0- o- @ ! 4
.]] .]) .]] .
1997 1998 1999 2000 2001 1997 1998 1999 2000 2001
Year Year
Temperature (°F): “ Temperature (°F): _ _
0 25 50 75 0 25 50 75

The {scico} package provides access to the color palettes developed by Fabio Crameri. These color palettes
are not only beautiful and often unusual but also a good choice since they have been developed to be percep-
tually uniform and ordered. In addition, they work for people with color vision deficiency and in grayscale:

library(scico)
gl <- gb + scale_color_scico(palette = "berlin")
g2 <- gb + scale_color_scico(palette = "hawaii", direction = -1)

(g1 + g2) * theme(legend.position = "bottom")

102

https://github.com/EmilHvitfeldt/r-color-palettes/blob/master/README.md#comprehensive-list-of-color-palettes-in-r
https://github.com/Nowosad/rcartocolor
https://www.google.com/search?client=firefox-b-d&q=carto+oclors
https://github.com/thomasp85/scico
http://www.fabiocrameri.ch/colourmaps.php

10.4 Quantitative Variables

75-

o o
e <
g g
5 5 50-
I ©
o o
] Q
£ £
25-
@ @
0-
.
1997 1998 1999 2000 2001 1997 1998 1999 2000 2001
Year Year
Temperature (°F): “ Temperature (°F): “
0 25 50 75 0 25 50 75

10.4.3.1 Modify Color Palettes Afterwards

Since the release of ggplot2 3.0.0, one can modify layer aesthetics after they have been mapped to the data.
Or as the {ggplot2} phrases it: “Use after_scale() to flag evaluation of mapping for after data has been
scaled”

So why not use the modified colors in the first place? Since {ggplot2} can only handle one color and
one fill scale, this is an interesting functionality. Look closer at the following example where we use
clr_negate() from the {prismatic} package:

library(prismatic)

ggplot(chic, aes(date, temp, color = temp)) +
geom_point(size = 5) +
geom_point (aes(color = temp,
color = after_scale(clr_negate(color))),
size = 2) +
scale_color_scico(palette = "hawaii", guide = "none") +
labs(x = "Year", y = "Temperature (°F)")

Warning: Duplicated aesthetics after name standardisation: colour

103

https://emilhvitfeldt.github.io/prismatic/

10 Working with Colors

Temperature (°F)

1997 1998 1999 2000 2001
Year

Changing the color scheme afterwards is especially fun with functions from the {prismatic} packages,
namely clr_negate(), clr_lighten(), clr_darken() and clr_desaturate(). You can even combine those
functions. Here, we plot a box plot that has both arguments, color and £ill:

library(prismatic)

ggplot(chic, aes(date, temp)) +
geom_boxplot (
aes(color = season,
fill = after_scale(clr_desaturate(clr_lighten(color, .6), .6))),
linewidth = 1
) +
scale_color_brewer(palette = "Dark2", guide = "none") +
labs(x = "Year", y = "Temperature (°F)")

104

10.4 Quantitative Variables

. | I

—

g1
o
[

|

Temperature (°F)

N
)]
[

0- ' °

1998 1999 2000
Year

Note that you need to specify the color and/or £il1 in the aes () of the respective geom_% () or stat_*() to
make after_scale() work.

! Important

This seems a bit complicated for now—one could simply use the color and fill scales for both. Yes,
that is true but think about use cases where you need several color and/or £i11 scales. In such a case, it
would be senseless to occupy the £i11 scale with a slightly darker version of the palette used for color.

105

11 Working with Themes

11.1 Change the Overall Plotting Style

You can change the entire look of the plots by using themes. {ggplot2} comes with eight built-in themes:

Attaching package: 'gridExtra'

The following object is masked from 'package:dplyr':

combine
Built—=in Themes
. theme_gray . theme_bw(. theme_clas . theme_dar}
S L S L
E E 75 E 75 Tg 75
=) > =) >
g g 50 g 50 g 50
o o 25 © 25 o 25
o o o 3 o
IS ¥ E o0 € o E 0
(b} (¢b) (b} (¢b)
F 199799899800P001 F 199799B99BOCPO01 - 199T99EOUEOCEO01 - 1997OYEOYEOCE0]
Year Year Year Year
__ theme_light _. theme Ilnedraw()theme minffgipe_void()
lciL/ EL_, R I R " U I v
< 75 o 75 Il1r1l 1'1 < 75
5 5 §i1,7 S5 .
g 50 g 50 g 50
© 25 o 25 © 25
o o o
E 0 : * E o0 £ 0§ . o
(] () T T T T)
F 1997998992002001 F 199799B9GBOCRO01 b= 199799EOYENCEN01
Year Year Year . g

There are several packages that provide additional themes, some even with different default color palettes.
As an example, Jeffrey Arnold has put together the library {ggthemes} with several custom themes imitating
popular designs. For a list you can visit the {ggthemes} package site. Without any coding you can just adapt
several styles, some of them well known for their style and aesthetics.

Here is an example copying the plotting style in the The Economist magazine by using theme_economist ()
and scale_color_economist ():

107

https://github.com/jrnold/ggthemes
https://www.google.de/search?q=economist+graphic&tbm=isch
http://www.economist.com/

11 Working with Themes

library(ggthemes)

ggplot(chic, aes(x = date, y = temp, color = season)) +
geom_point() +

labs(x = "Year", y = "Temperature (°F)") +

ggtitle("Ups and Downs of Chicago's Daily Temperatures") +
theme_economist() +

scale_color_economist(name = NULL)

Ups and Downs of Chicago's Daily Temperature
° Autumn e Spring ¢ Summer Winter

~
(6]

peratld_{e (°F)
o

Tem
N
(6)]

o

1997 1998 1999 2000 2001
Year

Another example is the plotting style of Tufte, a minimal ink theme based on Edward Tufte’s book The Visual
Display of Quantitative Information. This is the book that popularized Minard’s chart depicting Napoleon’s

march on Russia as one of the best statistical drawings ever created. Tufte’s plots became famous due to
the purism in their style. But see yourself:

library(dplyr)
chic_2000 <- filter(chic, year == 2000)

ggplot(chic_2000, aes(x = temp, y = 03)) +
geom_point() +
labs(x = "Temperature (°F)", y = "Ozone") +

ggtitle("Temperature and Ozone Levels During the Year 2000 in Chicago") +
theme_tufte()

108

http://ww%20w.aiga.org/medalist-edwardtufte
https://www.edwardtufte.com/tufte/books_vdqi
https://www.edwardtufte.com/tufte/books_vdqi
https://www.edwardtufte.com/tufte/minard
https://www.edwardtufte.com/tufte/minard

11.1 Change the Overall Plotting Style

Temperature and Ozone Levels During the Year 2000 in Chi

°
50- o
o®
40- ¢ o,
..¢.
Q o. % ° Ry
S 30- o® e ©® o _ g oqi b
°) o, o _0 &%
N ° ° 0 %% 5%, % o
@) g o, L) = o .’0“ ° ..4.... °
20- oo | ® $ 0.0 .o.!.o...o.:..o ...: °
° ® o0 3' o® q ®
] 08..00 o %y '..o. o..‘. Lo
°® 9% °° o ° $0 00
0 .0 °®, $% o o 0o ...03...: e ® o
° ::. ..00....:.0.....0:30...::...0:..
[..“ ..
s ° % o ° °
O' 1 1 1 1 1
0 20 40 60 80

Temperature (°F)

I reduced the number of data points here simply to fit it Tufte’s minimalism style. If you like the way of
plotting have a look on this blog entry creating several Tufte plots in R.

Another neat packages with modern themes and a preset of non-default fonts is the {hrbrthemes} package
by Bob Rudis with several light but also dark themes:

library(hrbrthemes)

ggplot(chic, aes(x = temp, y = 03)) +
geom_point (aes(color = dewpoint), show.legend = FALSE) +
labs(x = "Temperature (°F)", y = "Ozone") +
ggtitle("Temperature and Ozone Levels in Chicago")

109

http://motioninsocial.com/tufte/
https://github.com/hrbrmstr/hrbrthemes
https://github.com/hrbrmstr/hrbrthemes

11 Working with Themes

Temperature and Ozone Levels in Chicago

40-

Ozone

20~

Temperature (°F)

11.2 Change the Font of All Text Elements

It is incredibly easy to change the settings of all the text elements at once. All themes come with an argument
called base_family

g <- ggplot(chic, aes(x = date, y = temp)) +
geom_point(color = "firebrick") +
labs(x = "Year", y = "Temperature (°F)",
title = "Temperatures in Chicago")

g + theme_bw(base_family = "Playfair Display")

110

11.3 Change the Size of All Text Elements

Temperatures in Chicago

Temperature (°F)

1999
Year

11.3 Change the Size of All Text Elements

The theme_+ () functions also come with several other base_* arguments. If you have a closer look at the
default theme (see chapter “Create and Use Your Custom Theme” below) you will notice that the sizes of all
the elements are relative (rel()) to the base_size. As aresult, you can simply change the base_size if you
want to increase readability of your plots:

g + theme_bw(base_size = 30, base_family = "Roboto Condensed")

111

11 Working with Themes

11.4 Change the Size of All Line and Rect Elements

Similarly, you can change the size of all elements of type line and rect:

g + theme_bw(base_line_size = 1, base_rect_size = 1)

Temperatures in Chicago

al ~
o (61
5 5

Temperature (°F)
N
ol

11.5 Create Your Own Theme

If you want to change the theme for an entire session you can use theme_set as in theme_set (theme_bw()).
The default is called theme_gray (or theme_gray). If you wanted to create your own custom theme, you
could extract the code directly from the gray theme and modify. Note that the rel() function change the
sizes relative to the base_size.

theme_gray
function (base_size = 11, base_family = "", base_line_size = base_size/22,
base_rect_size = base_size/22)
{
half line <- base_size/2
t <- theme(line = element_line(colour = "black", linewidth = base_line_size,
linetype = 1, lineend = "butt"), rect = element_rect(fill = "white",
colour = "black", linewidth = base_rect_size, linetype = 1),
text = element_text(family = base_family, face = "plain",

112

11.5 Create Your Own Theme

colour = "black", size = base_size, lineheight = 0.9,
hjust = 0.5, vjust = 0.5, angle = 0, margin = margin(),
debug = FALSE), axis.line = element_blank(), axis.line.x = NULL,
axis.line.y = NULL, axis.text = element_text(size = rel(0.8),
colour = "grey30"), axis.text.x = element_text(margin = margin(t = 0.8 *
half_line/2), vjust = 1), axis.text.x.top = element_text(margin = margin(b = 0.8
half_line/2), vjust = 0), axis.text.y = element_text(margin = margin(r = 0.8 *
half_line/2), hjust = 1), axis.text.y.right = element_text(margin = margin(l = 0.8 *
half_line/2), hjust = 0), axis.text.r = element_text(margin = margin(l = 0.8
half_line/2, r = 0.8 * half_line/2), hjust = 0.5),
axis.ticks = element_line(colour = "grey20"), axis.ticks.length = unit(half_line/2,
"pt"), axis.ticks.length.x = NULL, axis.ticks.length.x.top = NULL,
axis.ticks.length.x.bottom = NULL, axis.ticks.length.y = NULL,
axis.ticks.length.y.left = NULL, axis.ticks.length.y.right = NULL,
axis.minor.ticks.length = rel(0.75), axis.title.x = element_text(margin = margin(t = half_line/2),
vjust = 1), axis.title.x.top = element_text(margin = margin(b = half line/2),
vjust = 0), axis.title.y = element_text(angle = 90,
margin = margin(r = half line/2), vjust = 1), axis.title.y.right = element_text(angle = -90,
margin = margin(l = half_line/2), vjust = 1), legend.background = element_rect(colour = NA),
legend.spacing = unit(2 * half_line, "pt"), legend.spacing.x = NULL,
legend.spacing.y = NULL, legend.margin = margin(half_line,
half line, half_line, half line), legend.key = NULL,
legend.key.size = unit(1.2, "lines"), legend.key.height = NULL,
legend.key.width = NULL, legend.key.spacing = unit(half_line,
"pt"), legend.text = element_text(size = rel(0.8)),
legend.title = element_text(hjust = 0), legend.ticks.length = rel(0.2),
legend.position = "right", legend.direction = NULL, legend.justification = "center",
legend.box = NULL, legend.box.margin = margin(0, 0, O,
0, "cm"), legend.box.background = element_blank(),
legend.box.spacing = unit(2 * half_line, "pt"), panel.background = element_rect(fill = "grey92",
colour = NA), panel.border = element_blank(), panel.grid = element_line(colour = "white"),
panel.grid.minor = element_line(linewidth = rel(0.5)),
panel.spacing = unit(half_line, "pt"), panel.spacing.x = NULL,
panel.spacing.y = NULL, panel.ontop = FALSE, strip.background = element_rect(fill = "grey85",
colour = NA), strip.clip = "inherit", strip.text = element_text(colour = "greyl0",
size = rel(0.8), margin = margin(0.8 * half_line,
0.8 * half_line, 0.8 * half_line, 0.8 * half_line)),
strip.text.x = NULL, strip.text.y = element_text(angle = -90),
strip.text.y.left = element_text(angle = 90), strip.placement = "inside",
strip.placement.x = NULL, strip.placement.y = NULL, strip.switch.pad.grid = unit(half_line/2,
"pt"), strip.switch.pad.wrap = unit(half_line/2,
"pt"), plot.background = element_rect(colour = "white"),
plot.title = element_text(size = rel(1.2), hjust = 0,
vjust = 1, margin = margin(b = half_line)), plot.title.position = "panel",
plot.subtitle = element_text(hjust = 0, vjust = 1, margin = margin(b = half_line)),

*

*

113

11 Working with Themes

}

plot.caption = element_text(size = rel(0.8), hjust =

1,

vjust = 1, margin = margin(t = half_line)), plot.caption.position = "panel",

plot.tag = element_text(size = rel(1.2), hjust = 0.5,
vjust = 0.5), plot.tag.position = "topleft", plot.margin

half line, half_ line, half line), complete = TRUE)
ggplot_global$theme_all null %+replace% t

<bytecode: 0x00000177b8d501b8>
<environment: namespace:ggplot2>

Now, let us modify the default theme function and have a look at the result:

margin(half_line,

theme_2hin <- function (base_size = 12, base_family = "Roboto Condensed") {

half line <- base _size/2

theme (
line

rect

text

axis.
axis.
axis.
axis.
axis.

axis.
axis.
axis.
axis.
axis.

axis.
.ticks.length.x.top = NULL,

axis

axis.
axis.
axis.
axis.
axis.

114

= element_line(color = "black", linewidth = .5,
linetype = 1, lineend = "butt"),

= element_rect(fill = "white", color = "black",
linewidth = .5, linetype = 1),

= element_text(family = base_family, face = "plain",
color = "black", size = base_size,

lineheight = .9, hjust = .5, vjust =

angle = 0, margin = margin(), debug = FALSE),

line = element_blank(),

28y

line.x = NULL,

line.y = NULL,

text = element_text(size = base_size * 1.1, color = "gray30"),

text.x = element_text(margin = margin(t = .8 * half line/2),
vjust = 1),

text.x.top = element_text(margin = margin(b = .8 * half line/2),

vjust = 0),

text.y = element_text(margin = margin(r = .8 * half line/2),
hjust = 1),

text.y.right = element_text(margin = margin(l = .8 * half line/2),

hjust = 0),
ticks = element_line(color = "gray30", linewidth = .7),

ticks.length = unit(half_line / 1.5, "pt"),
ticks.length.x = NULL,

ticks.length.x.bottom = NULL,
ticks.length.y = NULL,
ticks.length.y.left = NULL,
ticks.length.y.right = NULL,

title.x = element_text(margin = margin(t = half_ line),

11.5 Create Your Own Theme

vjust = 1, size = base_size * 1.3,
face = "bold"),

axis.title.x.top = element_text(margin = margin(b = half_line),

vjust = 0),

axis.title.y = element_text(angle = 90, vjust = 1,
margin = margin(r = half line),
size = base_size * 1.3, face = "bold"),

axis.title.y.right = element_text(angle = -90, vjust = 0,

margin = margin(l = half line)),

legend.background = element_rect(color = NA),

legend.spacing = unit(.4, "cm"),

legend.spacing.x = NULL,

legend.spacing.y = NULL,

legend.margin = margin(.2, .2, .2, .2, "cm"),

legend.key = element_rect(fill = "gray95", color = "white"),

legend.key.size = unit(1.2, "lines"),

legend.key.height = NULL,

legend.key.width = NULL,

legend.text = element_text(size = rel(.8)),

legend.text.align = NULL,

legend.title = element_text(hjust = 0),

legend.title.align = NULL,

legend.position = "right",

legend.direction = NULL,

legend. justification = "center",

legend.box = NULL,

legend.box.margin = margin(0, 0, 0, 0, "cm"),

legend.box.background = element_blank(),

legend.box.spacing = unit(.4, "cm"),

panel.background = element_rect(fill = "white", color = NA),

panel.border = element_rect(color = "gray30",

fill = NA, linewidth = .7),
panel.grid.major = element_line(color = "gray90", linewidth = 1),
panel.grid.minor = element_ line(color = "gray90", linewidth = .5,

linetype = "dashed"),

panel.spacing = unit(base_size, "pt"),
panel.spacing.x = NULL,
panel.spacing.y = NULL,
panel.ontop = FALSE,
strip.background = element_rect(fill = "white", color = "gray30"),
strip.text = element_text(color = "black", size = base_size),
strip.text.x = element_text(margin = margin(t = half_ line,

b = half_line)),
strip.text.y = element_text(angle = -90,

115

11 Working with Themes

margin = margin(l = half_line,

r = half_line)),

strip.text.y.left = element_text(angle = 90),

strip.placement = "inside",
strip.placement.x = NULL,
strip.placement.y = NULL,
strip.switch.pad.grid = unit(0.1, "cm"),
strip.switch.pad.wrap = unit(0.1, "cm"),
plot.background = element_rect(color = NA),
plot.title = element_text(size = base_size * 1.8, hjust = .5,
vjust = 1, face = "bold",
margin = margin(b = half_line * 1.2)),
plot.title.position = "panel",
plot.subtitle = element_text(size = base_size * 1.3,
hjust = .5, vjust 1,
margin = margin(b = half_line * .9)),

plot.caption = element_text(size = rel(0.9), hjust = 1, vjust = 1,
margin = margin(t = half line * .9)),

plot.caption.position = "panel",

plot.tag = element_text(size = rel(1.2), hjust = .5, vjust = .5),

plot.tag.position = "topleft",

plot.margin = margin(rep(base_size, 4)),

complete = TRUE

i Note

You can only overwrite the defaults for all elements you want to change. Here I listed all. so you can
see that you can change literally everything!

Have a look on the modified aesthetics with its new look of panel and gridlines as well as axes ticks, texts and
titles:

theme_set (theme_2hin())

ggplot(chic, aes(x = date, y = temp, color = season)) +
geom_point() + labs(x = "Year", y = "Temperature (°F)") + guides(color = "none"

116

11.6 Update the Current Theme

This way of changing the plot design is highly recommended! It allows you to quickly change any
element of your plots by changing it once. You can within a few seconds plot all your results in a congruent
style and adapt it to other needs (e.g. a presentation with bigger font size or journal requirements).

11.6 Update the Current Theme

You can also set quick changes using theme_update():

theme_2hin <- theme_update(panel.background = element_rect(fill = "gray60"))

ggplot(chic, aes(x = date, y = temp, color = season)) +
geom_point() + labs(x = "Year", y = "Temperature (°F)") + guides(color = "none"

117

11 Working with Themes

For further exercises, we are going to use our own theme with a white filling and without the minor grid
lines:

theme_2hin <- theme_update(
panel.background = element_rect(fill = "white"),
panel.grid.major = element_line(linewidth = .5),
panel.grid.minor = element_blank()

)

118

12 Working with Lines

12.1 Add Horizonal or Vertical Lines to a Plot

You might want to highlight a given range or threshold, which can be done plotting a line at defined coordi-
nates using geom_hline() (for “horizontal lines”) or geom_vline() (for “vertical lines”):

ggplot(chic, aes(x = date, y = temp, color = 03)) +

geom_point() +
geom_hline(yintercept = c(0, 73)) +
labs(x = "Year", y = "Temperature (°F)")

75-
. 03
[
e 50
D .
§ 50 40
c 30
g 20
5
= 25- 10
3
o—& a
° []
1 1 1 1 1
1997 1998 1999 2000 2001
Year

g <- ggplot(chic, aes(x = temp, y = dewpoint)) +
geom_point(color = "dodgerblue", alpha = .5) +

labs(x = "Temperature (°F)", y = "Dewpoint")

g +

geom_vline(aes(xintercept = median(temp)), linewidth = 1.5,

color = "firebrick", linetype = "dashed") +

119

12 Working with Lines

geom_hline(aes(yintercept = median(dewpoint)), linewidth = 1.5,

color = "firebrick", linetype = "dashed")

Dewpoint

1 1 1
0 25 50

75
Temperature (°F)

If you want to add a line with a slope not being 0 or 1, respectively, you need to use geom_abline(). This is
for example the case if you want to add a regression line using the arguments intercept and slope:

reg <- lm(dewpoint ~ temp, data = chic)

g +
geom_abline(intercept = coefficients(reg)[1],
slope = coefficients(reg)[2],

color = "darkorange2",
linewidth = 1.5) +
labs(title = pasteO("y = ", round(coefficients(reg)[2], 2),

" % x + ", round(coefficients(reg)[1], 2)))

120

12.2 Add a Line within a Plot

y =0.9*x + —4.64
80 -

60 -

Dewpoint
N
o

20-

0 25 50 75
Temperature (°F)

Later, we will learn how to add a linear fit with one command using stat_smooth(method = "1Im"). However,
there might be other reasons to add a line with a given slope and this is how one does it

12.2 Add a Line within a Plot

The previous approaches always covered the whole range of the plot panel, but sometimes one wants to
highlight only a given area or use lines for annotations. In this case, geom_linerange() is here to help:

g +
vertical line
geom_linerange (aes(x

50, ymin = 20, ymax = 55),
color = "steelblue", linewidth = 2) +
horizontal line

geom_linerange(aes(xmin = -Inf, xmax = 25, y = 0),
color = "red", linewidth = 1)

121

12 Working with Lines

80-

60 -

Dewpoint
N
o

N
o
[

° ®
; ®
°
e)
0 I ﬁ!‘g.)
o® o©
o ® °
0 25 50 75
Temperature (°F)

Or you can use annotate(geom = "segment") to draw lines with a slope differing from 0 and 1:
g +

annotate(geom = "segment",

x = 50, xend = 75,
y = 20, yend = 45,
color = "purple", linewidth = 2)

80 -

60 -
£ 40-
o
o
=
[
(a)

20-

0-

0 25 50 75
Temperature (°F)

122

12.3 Add Curved Lines and Arrows to a Plot

12.3 Add Curved Lines and Arrows to a Plot

annotate(geom = "curve") adds curves. Well, and straight lines if you like:
g +
annotate(geom = "curve",x = 0, y = 60, xend = 75, yend = 0,
color = "tan", linewidth = 2) +
annotate(geom = "curve",
x =0, y = 60, xend = 75, yend = 0,
curvature = -0.7, angle = 45,
color = "darkgoldenrodl", linewidth = 1) +
annotate(geom = "curve", x = 0, y = 60, xend = 75, yend = 0,

curvature = 0, linewidth = 1.5)

80-

60 -

Dewpoint
N
o

N
o
[

X @
e
)
8o °
0- o
1 .%. e
@o® °
o °)
0 25 50 75

Temperature (°F)

The same geom can be used to draw arrows:

g +
annotate(geom = "curve", x = 0, y = 60, xend = 75, yend = 0,
color = "tan", linewidth = 2,
arrow = arrow(length = unit(0.07, "npc"))) +
annotate(geom = "curve", x = 5, y = 55, xend = 70, yend = 5,
curvature = -0.7, angle = 45,

color = "darkgoldenrodl", linewidth = 1,
arrow = arrow(length = unit(0.03, "npc"),
type = "closed",
ends = "both"))

123

12 Working with Lines

80-

60 -

1

40-

c

1odmaq

20-

Temperature (°F)

124

13 Working with Text

13.1 Add Labels to Your Data

Sometimes, we want to label our data points. To avoid overlaying and crowding by text labels, we use a 1%
sample of the original data, equally representing the four seasons. We are using geom_label () which comes
with a new aesthetic called label:

set.seed(2020)

sample <- chic |»>
dplyr: :group_by(season) |>
dplyr: :sample_frac(0.01)

code without pipes:
sample <- sample_frac(group_by(chic, season), .01)

ggplot (sample, aes(x = date, y = temp, color = season)) +
geom_point() +

geom_label(aes(label = season), hjust = .5, vjust = -.5) +
labs(x = "Year", y = "Temperature (°F)") +
xlim(as.Date(c('1997-01-01", '2000-12-31"))) +

ylim(c(0, 90)) +

theme(legend.position = "none"

125

13 Working with Text

— [Summer]
Summer
¢ *[Autumn] Spring

o .
e ‘
o
5 %0~
I m_
@ Winter °
o
e :
: .

25' ()

[]
0-
1997 1998 1999 2000 2001

Year

Okay, avoiding overlap of labels did not work out. But don’t worry, we are going to fix it in a minute!

9 Using geom_text ()
You can also use geom_text () if you don’t like boxes around your labels. Expand to see example.

ggplot(sample, aes(x = date, y = temp, color = season)) +
geom_point() +
geom_text (aes(label = season), fontface = "bold",

hjust = .5, vjust = -.25) +

labs(x = "Year", y = "Temperature (°F)") +
xlim(as.Date(c('1997-01-01", '2000-12-31'))) +
ylim(c(0, 90)) +
theme(legend.position = "none"

126

13.1 Add Labels to Your Data

. Sunlmer
75 - %ﬁ'ﬁ‘ef Summer
Sur‘rlmer SprJng
o Autymn Sprjng
&) - Wiqter
= 50-
T Autymn
8 AUtYRRter
GE, Autqmn
= 25 - Wiqter
Wiqter
0-
1997 1998 1999 2000 2001
Year

The {ggrepel} package offers some great utilities by providing geoms for {ggplot2} to repel overlapping
text as in our examples above. We simply replace geom_text () by geom_text_repel() and geom_label()
by geom_label_repel():

library(ggrepel)

ggplot(sample, aes(x = date, y = temp, color = season)) +
geom_point () +

geom_label_repel(aes(label = season), fontface = "bold") +
labs(x = "Year", y = "Temperature (°F)") +
theme(legend.position = "none"

127

13 Working with Text

- S . ’
° . Autumn
[t |

- 60- °
e
9 [}

— []

5 *(Winter |

1997 1998 1999
Year

2000

It may look nicer with filled boxes so we map season to fill instead to color and set a white color for the
text:

ggplot (sample, aes(x = date, y = temp)) +
geom_point(data = chic, size = .5) +
geom_point(aes(color = season), size = 1.5) +
geom_label_repel(aes(label = season, fill = season),

color = "white", fontface = "bold",
segment.color = "grey30") +
labs(x = "Year", y = "Temperature (°F)") +
theme(legend.position = "none"

128

13.2 Add Text Annotations

R R . e
15 ol Sping] Al . 1

S s A et i S oy

EL\ ! 305, 3l Spring B3 o RN &
\q'; :. . on . .j g i:.f ':',:. ..:“:o #‘I ?‘E:
5 50- . é ; L .:; . .‘oi’ . ‘.t o 1 I .‘ 003.
4(-6. Y i. 2 .- * 1} 'ooo .‘. ® 0 ¢ *
I Autumn Y \yinger | Iy 3 T g
& i ‘-'}R?‘; Ty e UG]
(] i [> ® 4 iy 1 , o".' o'-o
F 25 I. Autumn § e -.3 .
- = .‘ © :.. 9 ° L]
. : g 2
[] . . .’ 9 2 3
i \Vinter 3 |
19@7 1958 1599 20b0 2601
Year

This also works for the pure text labels by using geom_text_repel (). Have alook at all the usage examples.

13.2 Add Text Annotations

There are several ways how one can add annotations to a ggplot. We can again use annotate(geom = "text"),
annotate(geom = "label"), geom_text() or geom_label():

g <-
ggplot(chic, aes(x = temp, y = dewpoint)) +
geom_point(alpha = .5) +
labs(x = "Temperature (°F)", y = "Dewpoint")

g +

annotate(geom = "text", x = 25, y = 60, fontface = "bold",
label = "This is a useful annotation")

129

https://ggrepel.slowkow.com/articles/examples.html

13 Working with Text

80 -
™ '0‘. ®
60 - This is a useful annotation
€ 40-
o
o
=
[b]
e
20-
(<]
(]
°8
0- T w. ®
o® °
o ® ®
0 25 50 75

Temperature (°F)

However, now ggplot has drawn one text label per data point—that’s 1,461 labels and you only see one! You
can solve that by setting the stat argument to "unique":

g +
geom_text(aes(x = 25, y = 60,
label = "This is a useful annotation"),
stat = "unique")

Warning in geom_text(aes(x = 25, y = 60, label = "This is a useful annotation"), : All aesthetics have le:

i Please consider using “annotate()” or provide this layer with data containing
a single row.

130

13.2 Add Text Annotations

80 -
° '0‘. C
60 - This is a useful annotation
€ 40-
o
o
=
()
a)
20 -
(<]
(]
°8
0- T .wo e
@o® °
o ® °

25 50 75
Temperature (°F)

By the way, of course one can change the properties of the displayed text:

g +
geom_text(aes(x = 25, y = 60,
label = "This is a useful annotation"),
stat = "unique", family = "Bangers",
size = 7, color = "darkcyan")

Warning in geom_text(aes(x = 25, y = 60, label = "This is a useful annotation"), : All aesthetics have lengt!

i Please consider using “annotate()® or provide this layer with data containing
a single row.

131

13 Working with Text

80-

60 -

40 -

Dewpoint

20~

0 25 50 75
Temperature (°F)

In case you use one of the facet functions to visualize your data you might run into trouble. One thing is that
you may want to include the annotation only once:

ann <- data.frame(

o3 = 30,
temp = 20,
season = factor("Summer", levels = levels(chic$season)),
label = "Here is enough space\nfor some annotations."
)
g <-

ggplot(chic, aes(x = 03, y = temp)) +
geom_point() +
labs(x = "Ozone", y = "Temperature (°F)")

g +
geom_text(data = ann, aes(label = label),
size = 7, fontface = "bold",
family = "Roboto Condensed") +
facet_wrap(~season)

132

13.2 Add Text Annotations

Autumn Spring Summer
L3
. &

o

<

g

3 1 1 1

& NA 0 20 40
I}

o

5

|_

Another challenge are facets in combination with free scales that might cut your text:

g +
geom_text(aes(x = 23, y = 97,
label = "This is not a useful annotation"),
size = 5, fontface = "bold") +

scale_y_continuous(limits c(NA, 100)) +

facet_wrap(~season, scales = "free_x")

Warning in geom_text(aes(x = 23, y = 97, label = "This is not a useful annotation"),

i Please consider using “annotate()® or provide this layer with data containing
a single row.

: All aesthetics have le

133

13 Working with Text

Autumn Spring

100-is is not a useful annotation not a useful annota;[ion
75-

° []
50 -
—~~ 25'
L
N—r 0 -
(D] 1 1 1 1 1 1
5 40 10 20 30 40 50
g Summer Winter
£ 100-g not a useful gnnotation his is not a useful annotatior
F 75- - O
50 - ®
25 -
0 -
10 20 30 40 50
Ozone

One solution is to calculate the midpoint of the axis, here x, beforehand:

ann <-
chic |>
dplyr::group_by(season) |>
dplyr: :summarize (
03 = min(o3, na.rm = TRUE) +
(max (03, na.rm = TRUE) - min(o3, na.rm = TRUE)) / 2

ann

A tibble: 4 x 2
season 03
<chr> <dbl>
Autumn 23.3
Spring 31.0
Summer 29.2
Winter 21.5

B W N =

.. and use the aggreated data to specify the placement of the annotation:

g +
geom_text(data = ann,
aes(x = 03, y = 97,
label = "This is a useful annotation"),

134

13.2 Add Text Annotations

size = 5, fontface = "bold") +
scale_y_continuous(limits = c(NA, 100)) +

facet_wrap(~season, scales = "free_x")
Autumn Spring
100-This is a useful annotation This is a useful annotation
75- 000, o
° * e ”,
50 -
—~~ 25' ﬁ.
L
e
5 0 10 20 30 40 10 20 30 40 50
IS
g Summer Winter
£ 100-This is a usefufannotation This is a useful annotation
5} %
= I L
25-
O-
10 20 30 40 50
Ozone

However, there is a simpler approach (in terms of fixing the cordinates)—but it also takes a while to know
the code by heart. The {grid} package in combination with {ggplot2}’s annotation_custom() allows you
to specify the location based on scaled coordinates where 0 is low and 1 is high. grobTree() creates a grid

graphical object and textGrob creates the text graphical object. The value of this is particularly evident when
you have multiple plots with different scales.

library(grid)
my_grob <- grobTree(textGrob("This text stays in place!",
x = .1, y = .9, hjust = 0,
gp = gpar(col = "black",
fontsize = 15,
fontface = "bold")))

g +
annotation_custom(my_grob) +
facet_wrap(~season, scales = "free x") +

scale_y_continuous(limits = c(NA, 100))

135

13 Working with Text

Autumn Spring
%7 This text stays in place! This text stays ip place!
. soen’s, o
° ‘. []
o
z; 1 1 1 1 1 1
.§ 40 10 20 30 40 50
g Summer Winter
%" This textStays i place! This text stays in place!
F 75- o & »
50- ° .
25 -

0-

13.3 Use Markdown and HTML Rendering for Annotations

Again, we are using Claus Wilke’s {ggtext} package that is designed for improved text rendering sup-
port for {ggplot2}. The {ggtext} package defines two new theme elements, element_markdown() and
element_textbox (). The package also provides additional geoms. geom_richtext() is a replacement for
geom_text () and geom_label () and renders text as markdown...

library(ggtext)

lab_md <- "This plot shows #**temperature** in *°F* versus **ozone level** in *ppm#*"

g +
geom_richtext(aes(x = 35, y = 3, label = lab_md),
stat = "unique")

Warning in geom_richtext(aes(x = 35, y = 3, label = lab_md), stat = "unique"): All aesthetics have lengtl
i Please consider using “annotate()” or provide this layer with data containing
a single row.

136

https://wilkelab.org/ggtext/

13.3 Use Markdown and HTML Rendering for Annotations

iy L Y A
- A) (J []
75 2° S Crets .
o :
Q 50-
= °
o
2 %
5
= 25-
:0. ° o
0 : :This plot shows temperature in °F versus ozone level in |
[J
0 20 40
Ozone
... or html:

lab_html <- "★ This plot shows <b style='color:red;'s>temperature in <i>°F</i> versus <b styl

g +

geom_richtext(aes(x = 33, y = 3, label = lab_html),

stat = "unique")

75 -
o
<
Q 50-
=
o
]
o
5
= 25-

O-

0 20 40
Ozone

137

13 Working with Text

The geom comes with a lot of details one can modify, such as angle (which is not possible in the default
geom_text () and geom_label()), properties of the box and properties of the text.

g +
geom_richtext(aes(x = 10, y = 25, label = lab_md),
stat = "unique", angle = 30,
color = "white", fill = "steelblue",
label.color = NA, hjust = 0, vjust = 0,
family = "Playfair Display")
Warning in geom_richtext(aes(x = 10, y = 25, label = lab_md), stat = "unique", : All aesthetics have leng

i Please consider using “annotate() or provide this layer with data containing
a single row.

75-

Temperature (°F)

0 20 40
Ozone

The other geom from the {ggtext} package is geom_textbox (). This geom allows for dynamic wrapping of
strings which is very useful for longer annotations such as info boxes and subtitles.

lab_long <- "**Lorem ipsum dolor**
<i style='font-size:8pt;color:red;'>Lorem ipsum dolor sit ame

g +
geom_textbox(aes(x = 40, y = 10, label = lab_long),
width = unit (15, "lines"), stat = "unique")

Warning in geom_textbox(aes(x = 40, y = 10, label = lab_long), width = unit (15, : All aesthetics have len
i Please consider using “annotate()” or provide this layer with data containing
a single row.

138

13.3 Use Markdown and HTML Rendering for Annotations

°
@l Yo o
Y L Y 4
75 - A) (J [} ()
5 \ . ‘ L %.o s o®
° o
)
—_
°
5)
Q 50-
= °
o
) [)
o °
=
QL os5- Lorem ipsum dolor
Lorem ipsum dolor sit amet, consectetur adipiscing elit,
sed do eiusmod tempor incididunt ut labore et dolore
magna aliqua.
0- Ut enim ad minim veniam, quis nostrud exercitation
I I ullamco laboris nisi ut aliquiplex ea commodo consequat.
0 20 40
Ozone

Note that it is not possible to either rotate the textbox (always horizontal) nor to change the justification of
the text (always left-aligned).

139

14 Working with Coordinates

14.1 Flip a Plot

It is incredibly easy to flip a plot on its side. Here I have added the coord_f1lip() which is all you need to
flip the plot. This makes most sense when using geom’s to represent categorical data, for example bar charts
or, as in the following example, box and whiskers plots:

ggplot(chic, aes(x = season, y = 03)) +
geom_boxplot(fill = "indianred") +
labs(x = "Season", y = "Ozone") +
coord_flip()

c
o
1]
©
)
(9]
Spring - eco 0 ®»
Autumn - 4.7 ®e) ®
0 20 40
Ozone
[] o . .
1 Using orientation = "y"

Since {ggplot2} version 3.0.0 it is also possible to draw geom’s horizontally via the argument
orientation = "y". Expand to see example.

141

14 Working with Coordinates

ggplot(chic, aes(x = 03, y = season)) +
geom_boxplot(fill = "indianred", orientation = "y") +
labs(x = "Ozone", y = "Season")

Season

Spring - eco 0 ®»

Autumn -

20 40
Ozone

14.2 Fix an Axis

One can fix the aspect ratio of the Cartesian coordinate system and literally force a physical representation
of the units along the x and y axes:

ggplot(chic, aes(x = temp, y = 03)) +
geom_point () +
labs(x = "Temperature (°F)", y = "Ozone Level") +
scale_x_continuous(breaks = seq(0, 80, by = 20)) +
coord_fixed(ratio = 1)

142

14.3 Reverse an Axis

40 -

Ozone Level

Temperature (°F)

This way one can ensure not only a fixed step length on the axes but also that the exported plot looks as

expected. However, your saved plot likely contains a lot of white space in case you do not use a suitable
aspect ratio:

ggplot(chic, aes(x = temp, y = 03)) +
geom_point () +
labs(x = "Temperature (°F)", y = "Ozone Level") +
scale_x_continuous(breaks = seq(0, 80, by = 20)) +
coord_fixed(ratio = 1/3) +

theme (plot.background = element_rect(fill = "grey80"))

240- °
- e . o 88 .
©
= 0a®
S 20- o * o3 - X4
S el
L2 (3 s [Y
° LTy
] .
0_

0 20 40 i !
Temperature (°F)

14.3 Reverse an Axis

You can also easily reverse an axis using scale_x_reverse() or scale_y_reverse(), respectively:

143

14 Working with Coordinates

ggplot(chic, aes(x = date, y = temp, color = 03)) +
geom_point() +
labs(x = "Year", y = "Temperature (°F)") +
scale_y_reverse()

O -
T 25-
< 50
o)
é 40
g 30
50-
= 20
5
[10
75-
1 1 1 1 1
1997 1998 1999 2000 2001
Year
i Note

Note that this will only work for continuous data. If you want to reverse discrete data, use the fct_rev()
function from the {forcats} package. Expand to see example.

the default
ggplot(chic, aes(x = temp, y = season)) +

geom_jitter(aes(color = season), show.legend = FALSE) +
labs(x = "Temperature (°F)", y = NULL)

144

https://forcats.tidyverse.org/

® .'... ’.~

)
Winter- © 0 %q .ﬁﬂ "o” o‘\ %
® o0 .o.h." .o....' °

Summer -
Spring -
Autumn -
[}
0 25 50 75
Temperature (°F)
library(forcats)

set.seed(10)

ggplot(chic, aes(x = temp, y = fct_rev(season))) +
geom_jitter(aes(color = season), show.legend = FALSE) +
labs(x = "Temperature (°F)", y = NULL)

Autumn =

Spring -

Summer -

Winter -

Temperature (°F)

14.3 Reverse an Axis

145

14 Working with Coordinates

14.4 Transform an Axis

... or transform the default linear mapping by using scale_y_log10() or scale_y_sqrt(). As an example,
here is a log10-transformed axis (which introduces NA’s in this case so be careful):

ggplot(chic, aes(x = date, y = temp, color = 03)) +
geom_point() +
labs(x = "Year", y = "Temperature (°F)") +
scale_y_logl0(lim = c(0.1, 100))

Warning in transformation$transform(x): NaNs produced

Warning in scale_y_logl0(lim =

c(0.1, 100)): log-10 transformation introduced
infinite values.

Warning: Removed 3 rows containing missing values or values outside the scale range
(" geom_point()).

100.0 -
—) 03
L 100- €@ ° o0
) ° . o ° e 50
o H H ° 40
= ° °
© I 30
[})
g_ ° 20
- e °
g 1.0 10
0.1-
- 1 1 1 1
1997 1998 1999 2000 2001
Year

14.5 Circularize a Plot

It is also possible to circularize (polarize?) the coordinate system by calling coord_polar().

146

14.5 Circularize a Plot

chic |>

dplyr: :group_by(season) |>

dplyr::summarize(o3 = median(o3)) |>

ggplot(aes(x = season, y = 03)) +
geom_col(aes(fill = season), color = NA) +
labs(x = "", y = "Median Ozone Level") +
coord_polar() +
guides(fill = "none"

25-

20- Winter Autumn

=
o o o u
1 1 1 1

Median Ozone Level

Summer

This coordinate system allows to draw pie charts as well:

chic_sum <-
chic |>
dplyr::mutate(o3_avg = median(o3)) |>
dplyr::filter(o3 > o3_avg) |>
dplyr::mutate(n_all = n()) |>
dplyr: :group_by(season) |>
dplyr::summarize(rel = n() / unique(n_all))

ggplot(chic_sum, aes(x = "", y = rel)) +
geom_col(aes(fill = season), width = 1, color = NA) +
labs(x = "", y = "Proportion of Days Exceeding\nthe Median Ozone Level") +

coord_polar(theta = "y") +
scale_fill_brewer(palette = "Setl", name = "Season:") +
theme (axis.ticks = element_blank(),

panel.grid = element_blank())

147

14 Working with Coordinates

0.00/1.00

. Summer
. Winter

0.50

Proportion of Days Exceeding
the Median Ozone Level

I suggest to always look also at the outcome of the same code in a Cartesian coordinate system, which is the
default, to understand the logic behind coord_polar() and theta:

ggplot(chic_sum, aes(x = "", y = rel)) +
geom_col(aes(fill = season), width = 1, color = NA) +
labs(x = "", y = "Proportion of Days Exceeding\nthe Median Ozone Level") +

#coord_polar(theta = "y") +
scale_fill_brewer(palette = "Setl", name = "Season:") +
theme (axis.ticks = element_blank(),

panel.grid = element_blank())

148

1.00

0.75

0.50

0.25

Proportion of Days Exceeding
the Median Ozone Level

0.00

14.5 Circularize a Plot

Season:

. Summer
. Winter

149

15 Working with Chart Types

15.1 Alternatives to a Box Plot

Box plots are great, but they can be so incredibly boring. Also, even if you are used to looking at box plots,
remember there might be plenty people looking at your plot that have never seen a box and whisker plot

before.

@ Recall: Box and Whiskers Plot

A box-and-whisker plot (sometimes called simply a box plot) is a histogram-like method of
displaying data, invented by J. Tukey. The thick middle line notates the median, also
known as quartile Q2. The limits of the box are determined by the lower and upper
quartiles, Q1 and Q3. The box contains thus 50% of the data and is called “interquartile
range” (IQR). The length of the whiskers is determined by the most extreme values that
are not considered as outliers (i.e. values that are within 3/2 times the interquartile range).

BOX
WHISKER WHISKER
A NN
MINIMUM MAXIMUM
A i RS
LOWER UPPER
QUARTILE, Q, MEDIAN, Q; QUARTILE, Q5

There are alternatives, but first we are plotting a common box plot:

g <-
ggplot(chic, aes(x = season, y = 03,
color = season)) +
labs(x = "Season", y = "Ozone") +
scale_color_brewer(palette = "Dark2", guide = "none")

g + geom_boxplot ()

151

15 Working with Chart Types

e
. 4
° (]
40-
[]
@
5 i
N
O
20~
0 -
Autlljmn SpFing Sumlmer
Season
15.1.1 Alternative: Plot of Points
Let’s plot just each data point of the raw data:
g + geom_point()
e
; s
°
P)
°
s
0
40-
[]
)
5 b
N
o
20-
0 -
AutLIJmn Sprling Surr;mer

Season

152

1
Winter

1
Winter

15.1 Alternatives to a Box Plot

Not only boring but uninformative. To improve the plot, one could add transparency to deal with overplot-
ting:

g + geom_point(alpha = .1)

40 -

20']

Ozone
C oD G T
I GG S WmC O
WL 9L

]

Autumn Spring Summer Winter
Season

However, setting transparency is difficult here since either the overlap is still too high or the extreme values
are not visible. Bad, so let’s try something else.

15.1.2 Alternative: Jitter the Points

Try adding a little jitter to the data. I like this for in-house visualization but be careful using jittering because
you are purposely adding noise to your data and this can result in misinterpretation of your data.

g + geom_jitter(width = .3, alpha = .5)

153

15 Working with Chart Types

® @
. ® oo
@ . ‘
e e o °®
7) "‘.."
(O]
c
@]
N
@]
20 -

®
3‘0‘&" 3
Be oS

Spring Summer Winter
Season

15.1.3 Alternative: Violin Plots

Violin plots, similar to box plots except you are using a kernel density to show where you have the most data,
are a useful visualization.

g + geom_violin(fill = "gray80", linewidth = 1, alpha = .5)

40 -

Ozone

20~

Autumn Spring Summer Winter
Season

154

15.1 Alternatives to a Box Plot

15.1.4 Alternative: Combining Violin Plots with Jitter

We can of course combine both, estimated densities and the raw data points:

g + geom_violin(fill = "gray80", linewidth = 1, alpha = .5) +
geom_jitter(alpha = .25, width = .3) +
coord_flip()

Winter -

Summer -

Season

Spring =

Autumn -

0 20 40
Ozone

The {ggforce} package provides so-called sina functions where the width of the jitter is controlled by the
density distribution of the data—that makes the jittering a bit more visually appealing:

155

https://ggforce.data-imaginist.com/

15 Working with Chart Types

library(ggforce)

g + geom_violin(fill = "gray80", linewidth = 1, alpha = .5) +

geom_sina(alpha = .25) +

coord_flip()

Winter -

Summer -

Season

Spring -

Autumn -

0 20 40

15.1.5 Alternative: Combining Violin Plots with Box Plots

To allow for easy estimation of quantiles, we can also add the box of the box plot inside the violins to indicate
25%-quartile, median and 75%-quartile:

g + geom_violin(aes(fill = season), linewidth = 1, alpha = .5) +
geom_boxplot (outlier.alpha = 0, coef = 0,
color = "gray40", width = .2) +
scale_fill brewer(palette = "Dark2", guide = "none") +
coord_flip()

156

15.2 Create a Rug Representation to a Plot

Winter -

Summer -

Season

Spring -

Autumn -

Ozone

15.2 Create a Rug Representation to a Plot

A rug represents the data of a single quantitative variable, displayed as marks along an axis. In most cases,
it is used in addition to scatter plots or heatmaps to visualize the overall distribution of one or both of the
variables:

ggplot(chic, aes(x = date, y = temp,
color = season)) +
geom_point (show.legend = FALSE) +
geom_rug(show.legend = FALSE) +
labs(x = "Year", y = "Temperature (°F)")

157

15 Working with Chart Types

=
||
| |
7548
E I
N
]
5 508
s 0
[}
o
g I
~ 25
| |
—]
—
0=
1997 1998 1999 2000 2001
Year

ggplot(chic, aes(x = date, y = temp, color = season)) +
geom_point (show. legend = FALSE) +
geom_rug(sides = "r", alpha = .3, show.legend = FALSE) +
labs(x = "Year", y = "Temperature (°F)")

Temperature (°F)

158

15.3 Create a Correlation Matrix
15.3 Create a Correlation Matrix

There are several packages that allow to create correlation matrix plots, some also using the{ggplot2} infras-
tructure and thus returning ggplots. I am going to show you how to do this without extension packages.

First step is to create the correlation matrix. Here, we use the {corrr} package that works nicely with pipes
but there are also many others out there. We are using Pearson because all the variables are fairly normally
distributed (but you may consider Spearman if your variables follow a different pattern). Note that since a
correlation matrix has redundant information we are setting half of it to NA.

corm <-
chic |>
dplyr::select(temp, dewpoint, pml0, o03) |>
corrr::correlate(diagonal = 1) |>
corrr: :shave(upper = FALSE)

Correlation computed with
* Method: 'pearson'
* Missing treated using: 'pairwise.complete.obs'

library(gt)
corm %>% gt()

term temp dewpoint pm10 03
temp 1 09577391 0.3679648 0.5349655
dewpoint NA 1.0000000 0.3274569 0.4539134
pm10 NA NA 1.0000000 0.2060732
03 NA NA NA 1.0000000

Now we put the resulting matrix in long format using the pivot_longer() function from the {tidyr}
package. We also directly format the labels and place empty quotes for the upper triangle. Note that I use
sprintf () to ensure that the label always display two digits.

corm <- corm |>
tidyr: :pivot_longer(

cols = -term,
names_to = "colname",
values to = "corr"

) |>

dplyr: :mutate(
rowname = forcats::fct_inorder(term),
colname = forcats::fct_inorder(colname),
label = dplyr::if else(is.na(corr), "", sprintf("%1.2f", corr))

159

15 Working with Chart Types

term colname corr label
temp temp temp 1.0000000 1.00
temp temp dewpoint 0.9577391 0.96
temp temp pm10 0.3679648 0.37
temp temp 03 0.5349655 0.53
dewpoint | dewpoint temp NA

dewpoint | dewpoint dewpoint 1.0000000 1.00
dewpoint | dewpoint pm10 0.3274569 0.33

dewpoint | dewpoint 03 0.4539134 0.45
pm10 pm10 temp NA
pm10 pm10 dewpoint NA
pmi0 pm10 pm10 1.0000000 1.00
pm10 pm10 03 0.2060732 0.21
03 03 temp NA
03 03 dewpoint NA
03 03 pm10 NA
03 03 03 1.0000000 1.00

For the plot we will use geom_tile() for the heatmap and geom_text () for the labels:

ggplot(corm, aes(rowname, fct_rev(colname),
fill = corr)) +
geom_tile() +
geom_text (aes(label = label)) +
coord_fixed() +
labs(x = NULL, y = NULL)

160

15.3 Create a Correlation Matrix

temp -

corr

dewpoint -

pm10 -

03 -

1 1 1
temp dewpoint pm10 03

I like to have a diverging color palette—it is important that the scale is centered at zero correlation!—with
white indicating missing data. Also I like to have no grid lines and padding around the heatmap as well as
labels that are colored depending on the underlying fill:

ggplot(corm, aes(rowname, fct_rev(colname),
fill = corr)) +
geom_tile() +
geom_text (aes(
label = label,
color = abs(corr) < .75
) +
coord_fixed(expand = FALSE) +
scale_color_manual(

values = c("white", "black"),
guide = "none"

) +

scale_fill_distiller(
palette = "PuOr", na.value = "white",
direction = 1, limits = c(-1, 1),
name = "Pearson\nCorrelation:"

) +

labs(x = NULL, y = NULL) +
theme(panel.border = element_rect(color = NA, fill = NA),
legend.position.inside = c(.85, .8))

161

15 Working with Chart Types

temp

Pearson
Correlation:

III 1.0

0.5

dewpoint

0.0
pm10 -

03- 0.53 0.45 0.21

T) 1
temp dewpoint pm10 03

15.4 Create a Contour Plot

Contour plots are nice way to display eatesholds of values. One can use them to bin data, showing the density
of observations:

ggplot(chic, aes(temp, 03)) +
geom_density_2d() +
labs(x = "Temperature (°F)", x = "Ozone Level")

162

15.4 Create a Contour Plot

40 -

30-

03

20-

0 25 50 75
Temperature (°F)

ggplot(chic, aes(temp, 03)) +
geom_density_2d_filled(show.legend = FALSE) +
coord_cartesian(expand = FALSE) +
labs(x = "Temperature (°F)", x = "Ozone Level")

0 25 50 75
Temperature (°F)

But now, we are plotting three-dimensional data. We are going to plot the thresholds in dewpoint (i.e. the
temperature at which airborne water vapor will condense to form liquid dew) related to temperature and

163

https://en.wikipedia.org/wiki/Dew_point
https://en.wikipedia.org/wiki/Dew_point

15 Working with Chart Types

ozone levels:

interpolate data
f1d <- with(chic, akima::interp(x = temp, y = 03, z = dewpoint))

prepare data in long format
df <- fld$z |>
tibble::as_tibble(.name_repair = "universal_quiet") |>
dplyr::mutate(x = dplyr::row_number()) |>
tidyr: :pivot_longer(
cols = -x,
names_to = "y",
names_transform = as.integer,
values_to = "Dewpoint",
names_prefix = "..."

5

values_drop_na = TRUE

)
g <- ggplot(data = df, aes(x = x, y =y, z = Dewpoint)) +
labs(x = "Temperature (°F)", y = "Ozone Level",
color = "Dewpoint")

g + stat_contour(aes(color = after_stat(level)))

40-
N
o
307 Dewpoint
= <
g 60
()
= <©
@ 20- 40
R
o) . ° % 20
10- 8 ' 0
0
1 1 1 1
10 20 30 40

Temperature (°F)

Surprise! As it is defined, the drew point is in most cases equal to the measured temperature.

164

15.4 Create a Contour Plot

The lines are indicating different levels of drew points, but this is not a pretty plot and also hard to read due to

missing borders. Let’s try a tile plot using the viridis color palette to encode the dewpoint of each combination
of ozone level and temperature:

g + geom_tile(aes(fill = Dewpoint)) +
scale_fill viridis_c(option = "inferno")

40~

30- Dewpoint
o
z 60
-
0 20- 40
N
S 20

0
10-
0 - 1 1 1 1 1
0 10 20 30 40

Temperature (°F)

How does it look if we combine a contour plot and a tile plot to fill the area under the contour lines?

g + geom_tile(aes(fill = Dewpoint)) +
stat_contour(color = "white", linewidth = .7, bins = 5) +
scale_fill viridis_c()

165

15 Working with Chart Types

40~

30- Dewpoint
©
= 60
-
@ 20- 40
N
a 20

0
10-
0 = 1 1 1 1 1
0 10 20 30 40

Temperature (°F)

15.5 Create a Heatmap of Counts

Similarly to our first contour maps, one can easily show the counts or densities of points binned to a hexagonal
grid via geom_hex():

library(hexbin)

ggplot(chic, aes(temp, 03)) +
geom_hex() +

scale_fill distiller(palette = "YlOrRd", direction = 1) +
labs(x = "Temperature (°F)", y = "Ozone Level")

166

40-
Q
(]
|
()
5
S -
O 20- P
ot o
2% %
o*‘o
0-
0 25 50

Temperature (°F)

Often, white lines pop up in the resulting plot.

15.5 Create a Heatmap of Counts

count
12.5

10.0
7.5
5.0
2.5

75

One can fix that by mapping also color to either

after_stat (count) (the default) or after_stat (density)...

ggplot(chic, aes(temp, 03)) +
geom_hex(aes(color = after_stat(count))) +

scale_fill _distiller(palette = "Y1lOrRd", direction = 1) +
scale_color_distiller(palette = "Y1lOrRd", direction = 1) +
labs(x = "Temperature (°F)", y = "Ozone Level")

167

15 Working with Chart Types

count
12.5
10.0
7.5
409 5.0
T>) 2.5
()
-
()
c
Q count
O 20- 125
10.0
7.5
5.0
0- 1 1 1 1 2.5
0 25 50 75
Temperature (°F)
... or by setting the same color as outline for all hexagonal cells:
ggplot(chic, aes(temp, 03)) +
geom_hex(color = "grey") +
scale _fill distiller(palette = "YlOrRd", direction = 1) +
labs(x = "Temperature (°F)", y = "Ozone Level")
count
< 12.5
>
2 10.0
Q 75
o
8 5.0
25

Temperature (°F)

168

15.5 Create a Heatmap of Counts

One can also change the default binning to in- or decrease the number of hexagonal cells:

ggplot(chic, aes(temp, 03, fill = after_stat(density))) +

geom_hex(bins = 50, color = "grey") +

scale_fill distiller(palette = "YlOrRd", direction = 1) +

labs(x = "Temperature (°F)", y = "Ozone Level")

40- density
o) 0.005
i
- > ¢ 0.004
[} > e . o
5 e 0.003
N > < .

O 20- > e 0.002
O g 0.001
®
“e ‘.
> ‘. []
O-
0 25 50 75

Temperature (°F)

If you want to have a regular grid, one can also use geom_bin2d() which summarizes the data to rectangular
grid cells based on bins:

ggplot(chic, aes(temp, 03, fill = after_stat(density))) +
geom_bin2d(bins = 15, color = "grey") +
scale_fill distiller(palette = "Y1OrRd", direction = 1) +
labs(x = "Temperature (°F)", y = "Ozone Level")

169

15 Working with Chart Types

60 -
density
40 -
©
= 0.020
|
o 0.015
c
g 0.010
20- 0.005
0 -

Temperature (°F)

15.6 Create a Ridge Plot

Ridge(line) plots are a new type of plots which is very popular at the moment.

While you can create those plots with basic {ggplot2} commands the popularity lead to a package that make
it easier create those plots: {ggridges}. We are going to use this package here.

library(ggridges)

ggplot(chic, aes(x = temp, y = factor(year))) +
geom_density_ridges(fill = "gray90") +
labs(x = "Temperature (°F)", y = "Year")

Picking joint bandwidth of 5.23

170

https://github.com/halhen/viz-pub/blob/master/sports-time-of-day/2_gen_chart.R
https://wilkelab.org/ggridges/

15.6 Create a Ridge Plot

2000 -

Year

1999 -

1998 -

1997 -

0 40 80
Temperature (°F)

You can easily specify the overlap and the trailing tails by using the arguments rel_min_height and scale,
respectively. The package also comes with its own theme (but I would prefer to build my own, see chapter
“Create and Use Your Custom Theme”). Additionally, we change the colors based on year to make it more
appealing.

ggplot(chic, aes(x = temp, y = factor(year), fill = year)) +
geom_density_ridges(alpha = .8, color = "white",
scale = 2.5, rel min_height = .01) +
labs(x = "Temperature (°F)", y = "Year") +
guides(fill = "none") +
theme_ridges()

Picking joint bandwidth of 5.23

171

15 Working with Chart Types

Year

2000

1999

1998

1997

0 40 80
Temperature (°F)

You can also get rid of the overlap using values below 1 for the scaling argument (but this somehow contradicts

the idea of ridge plots...). Here is an example additionally using the viridis color gradient and the in-build
theme:

ggplot(chic, aes(x = temp, y = season, fill = after_stat(x))) +

geom_density_ridges_gradient(scale = .9, gradient_lwd = .5,

color = "black") +
scale_fill_viridis_c(option = "plasma", name = "") +
labs(x = "Temperature (°F)", y = "Season") +

theme_ridges(font_family = "Roboto Condensed", grid = FALSE)

172

15.6 Create a Ridge Plot

O N O &

We can also compare several groups per ridgeline and coloring them according to their group. This follows
the idea of Marc Belzunces.

library(dplyr)

only plot extreme season using dplyr from the tidyverse
ggplot(data = dplyr::filter(chic, season %in% c("Summer", "Winter")),
aes(x = temp, y = year, fill = paste(year, season))) +
geom_density_ridges(alpha = .7, rel_min_height = .01,

color = "white", from = -5, to = 95) +
scale_fill cyclical(breaks = c("1997 Summer", "1997 Winter"),
labels = c(° 1997 Summer™ = "Summer",
1997 Winter® = "Winter"),
values = c("tomato", "dodgerblue"),
name = "Season:", guide = "legend") +

theme_ridges(grid = FALSE)
labs(x = "Temperature (°F)", y = "Year")

+

Picking joint bandwidth of 3.17

173

https://twitter.com/marcbeldata/status/888697140268204032

15 Working with Chart Types

g
> 2001
2000 ‘A.
Season:
1999 | Summer
I Winter
1998
1997

0 25 50 75 100
Temperature (°F)

The {ggridges} package is also helpful to create histograms for different groups using stat = "binline"
in the geom_density_ridges() command:

ggplot(chic, aes(x = temp, y = factor(year), fill = year)) +
geom_density_ridges(stat = "binline", bins = 25, scale = .9,

draw_baseline = FALSE, show.legend = FALSE) +
theme_minimal() +

labs(x = "Temperature (°F)", y = "Season")

2000

1999

Season

1998

1997

0 25 50 75 10¢C
Temperature (°F)

174

16 Working with Ribbons (AUC, Cl, etc.)

This is not a perfect dataset for demonstrating this, but using ribbon can be useful. In this example we will
create a 30-day running average using the filter() function so that our ribbon is not too noisy.

chic$o3run <- as.numeric(stats::filter(chic$o3, rep(1/30, 30), sides = 2))
ggplot(chic, aes(x = date, y = o3run)) +

geom_line(color = "chocolate", lwd = .8) +
labs(x = "Year", y = "Ozone")

Warning: Removed 29 rows containing missing values or values outside the scale range
(*geom_line()).

30-

25-

Ozone
N
o

15-

10-

1 1 1 1 1
1997 1998 1999 2000 2001
Year

How does it look if we fill in the area below the curve using the geom_ribbon() function?
ggplot(chic, aes(x = date, y = o3run)) +

geom_ribbon(aes(ymin = 0, ymax = o3run),
fill = "orange", alpha = .4) +

175

16 Working with Ribbons (AUC, CI, etc.)

geom_line(color = "chocolate", lwd = .8) +
labs(x = "Year", y = "Ozone")

Warning: Removed 29 rows containing missing values or values outside the scale range
(Tgeom_line()).

30-

20~

Ozone

10-

0-

1 1 1 1 1
1997 1998 1999 2000 2001
Year

Nice to indicate the area under the curve (AUC) but this is not the conventional way to use geom_ribbon().

o Using geom_area()
Actually a nicer way to achieve the same is geom_area().

ggplot(chic, aes(x = date, y = o3run)) +

geom_area(color = "chocolate", lwd = .8,
fill = "orange", alpha = .4) +
labs(x = "Year", y = "Ozone")

Warning: Removed 29 rows containing non-finite outside the scale range
(“stat_align() ™).

176

https://en.wikipedia.org/wiki/Area_under_the_curve_(pharmacokinetics)

30-

20-

Ozone

10-

1 1 1 1 1
1997 1998 1999 2000 2001
Year

Instead, we draw a ribbon that gives us one standard deviation above and below our data:

chic$mino3 <- chic$o3run - sd(chic$o3run, na.rm = TRUE)
chic$maxo3 <- chic$o3run + sd(chic$o3run, na.rm = TRUE)
ggplot(chic, aes(x = date, y = o3run)) +
geom_ribbon(aes(ymin = mino3, ymax = maxo3), alpha = .5,
fill = "darkseagreen3", color = "transparent") +
geom_line(color = "aquamarine4", lwd = .7) +
labs(x = "Year", y = "Ozone")

Warning: Removed 29 rows containing missing values or values outside the scale range

(“geom_line()").

177

16 Working with Ribbons (AUC, CI, etc.)

40 -

30-

Ozone
N
o

10-

1997 1998 19'99 20'00 20'01
Year

178

17 Working with Smoothings

It is amazingly easy to add smoothing to your data using {ggplot2}.

17.1 Default: Adding a LOESS or GAM Smoothing

You can simply use stat_smooth()—not even a formula is required. This adds a LOESS (locally weighted
scatter plot smoothing, method = "loess")if you have fewer than 1000 points or a GAM (generalized additive
model, method = "gam") otherwise. Since we have more than 1000 points, the smoothing is based on a

GAM

ggplot(chic, aes(x
geom_point (color
stat_smooth() +
labs(x = "Year",

y

date, vy
"gray40", alpha = .

= "Temperature (°F)")

= temp)) +

“geom_smooth()” using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'

75-

50 -

Temperature (°F)

o °
_‘ e D
. Y
3 5 ,‘(
..

2000 2001

179

17 Working with Smoothings

i Note

In most cases one wants the points to be on top of the ribbon so make sure you always call the smoothing
before you add the points.

17.2 Adding a Linear Fit

Though the default is a LOESS or GAM smoothing, it is also easy to add a standard linear fit:
ggplot(chic, aes(x = temp, y = dewpoint)) +

geom_point(color = "gray40", alpha = .5) +
stat_smooth(method = "1m", se = FALSE,

color = "firebrick", linewidth = 1.3) +
labs(x = "Temperature (°F)", y = "Dewpoint")

“geom_smooth()” using formula = 'y ~ x'

80-

60 -

N
o
[

Dewpoint

20~

0 25 50 :

75
Temperature (°F)

17.3 Specifying the Formula for Smoothing

{ggplot2} allows you to specify the model you want it to use. Maybe you want to use a polynomial regres-
sion?

180

https://en.wikipedia.org/wiki/Polynomial_regression
https://en.wikipedia.org/wiki/Polynomial_regression

17.3 Specifying the Formula for Smoothing

ggplot(chic, aes(x = 03, y = temp)) +
geom_point(color = "gray40", alpha = .3) +
geom_smooth(

method = "Im",

formula = y ~ x + I(x22) + I(x*3) + I(x"4) + I(xM5),

color = "black",
fill = "firebrick"
) +
labs(x = "Ozone Level", y = "Temperature (°F)")

75-

Temperature (°F)

Ozone Level

@ Difference between geom and stat

Huh, geom_smooth()? There is an important difference between geomand stat but here it really doesn’t
matter which one you use. Expand to compare both.

ggplot(chic, aes(x = 03, y = temp)) +
geom_point(color = "gray40", alpha = .3) +
geom_smooth(stat = "smooth") + ## the default
labs(x = "Ozone Level", y = "Temperature (°F)")

“geom_smooth()* using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'

181

17 Working with Smoothings

75-

Temperature (°F)

0 20 40
Ozone Level

ggplot(chic, aes(x = 03, y = temp)) +
geom_point(color = "gray40", alpha = .3) +
stat_smooth(geom = "smooth") + ## the default
labs(x = "Ozone Level", y = "Temperature (°F)")

“geom_smooth()” using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'

75-

50 -

Temperature (°F)

0 20 40
Ozone Level

182

17.3 Specifying the Formula for Smoothing

Or lets say you want to increase the GAM dimension (add some additional wiggles to the smooth):

cols <- c("darkorange2", "firebrick", "dodgerblue3")

ggplot(chic, aes(x = date, y = temp)) +
geom_point(color = "gray40", alpha = .3) +
stat_smooth(aes(col = "1000"),

method = "gam",

formula = y ~ s(x, k = 1000),

se = FALSE, linewidth = 1.3) +
stat_smooth(aes(col = "100"),

method = "gam",

formula = y ~ s(x, k = 100),

se = FALSE, linewidth = 1) +
stat_smooth(aes(col = "10"),

method = "gam",

formula = y ~ s(x, k = 10),

se = FALSE, linewidth = .8) +
scale_color_manual (name = "k", values = cols) +
labs(x = "Year", y = "Temperature (°F)")

Temperature (°F)

183

18 Working with Interactive Plots

The following collection lists libraries that can be used in combination with {ggplot2} or on their own to
create interactive visualizations in R (often making use of existing JavaScript libraries).

18.1 Combination of {ggplot2} and {shiny}

{shiny} is a package from RStudio that makes it incredibly easy to build interactive web applications with R.
For an introduction and live examples, visit the Shiny homepage.

To look at the potential use, you can check out the Hello Shiny examples. This is the first one:

library(shiny)
runExample("01_hello")

Of course, one can use ggplots in these apps. This example demonstrates the possibility to add some interac-
tive user experience:

runExample ("04_mpg")

18.2 Plot.ly via {plotly} and {ggplot2}

Plot.ly is a tool for creating online, interactive graphics and web apps. The {plotly} package enables you
to create those directly from your {ggplot2} plots and the workflow is surprisingly easy and can be done
from within R. However, some of your theme settings might be changed and need to be modified manually
afterwards. Also, and unfortunately, it is not straightforward to create facets or true multi-panel plots that
scale nicely.

g <- ggplot(chic, aes(date, temp)) +

geom_line(color = "grey") +
geom_point (aes(color = season)) +
scale_color_brewer(palette = "Dark2", guide = "none") +
labs(x = NULL, y = "Temperature (°F)") +
theme_bw()

g

185

https://rstudio.com/
http://shiny.rstudio.com/
https://chart-studio.plotly.com/feed/#/
https://plot.ly/r/getting-started/
https://plotly-r.com/
https://plotly-r.com/

18 Working with Interactive Plots

Temperature (°F)

library(plotly)

ggplotly(g)

186

18.3 ggiraph and ggplot2

3~ o o 50¢ "
.. o e .m L %Y O..“"...O .0
o oy g® ey — ooooo
L4 L (]] .nc.. °
o2=Ceg onoo 3 4
o o8 u”“o o..-n
i = R
%0 o oo.""n = o e
et m = - 0” . 0"-
° .l “0~.0“0.0 Q“
° e $ Qe
°] ®
co—g—s—9g=® “0000““0.0
S - o=0%—3,
. P N e L)
. oq 0.‘ = 0" < ..“.. °
°
(=—== 088e o oo
+ e85 oo oot S
o® ..0.“ *® >
P B ooonououo . o
. . L 8%8%00—
oo o oo.ou] L7~ aand
® 0 %80 0 «253 uoo °* L
° 0“.0 o0
coo 880 oo
o38e .om
¢ .om oon moo °
e “M” m. "..0
cse—0—¢ Qg0 S Se0—
o o¢ o “ 00. ” °
" .O.ﬂ.... e Oo
ee o s 3 o %%
° e e © g S 00 o _0gge oges o
° oo O S 90, ¢
ooonoun s
® omoomo-
o8 8 o o o®
o0 0o® o o o S e e ®
o pp %o Ol
% %55%%
o g0 o° * oo -y
% &% °
. oo o0 o' ‘o
T =
o« 4. oonoo\l‘ 0
. ® on#noo.o % .«
. "
—= ooﬁo. 'S.”looo °
S s STt
PO & 5 = s o
. oo‘n‘ - .
o3 % .00.? “ s
oo *® o @—®-o
o = o(=9
A - m- [“" S0 °
. ® d)i . ooM . 3o
o Pg® > -0
° ° . ooo i ‘" $ o..o -

T
1999

T
1998

T
1997

754
04

wn
(4o) 24mesadwa|

25+

Here, for example, it keeps the overall theme setting but adds the legend again.

18.3 ggiraph and ggplot2

187

{ggiraph} is an R package that allows you to create dynamic {ggplot2} graphs. This allows you to add
tooltips, animations and JavaScript actions to the graphics. The package also allows the selection of graphical

elements when used in Shiny applications.

https://davidgohel.github.io/ggiraph/index.html

18 Working with Interactive Plots

library(ggiraph)

g <- ggplot(chic, aes(date, temp)) +
geom_line(color = "grey") +
geom_point_interactive(

aes(color = season, tooltip = season, data_id = season)

) +

scale_color_brewer(palette = "Dark2", guide = "none") +
labs(x = NULL, y = "Temperature (°F)") +

theme_bw ()

girafe(ggobj = g)

757

(o)
o
1

Temperature (°F)

N
()]
1

18.4 Highcharts via {highcharter}

Highcharts, a software library for interactive charting, is another visualization library written in pure

JavaScript that has been ported to R. The package {highcharter} makes it possible to use them—but be
aware that Highcharts is only free in case of non-commercial use.

188

https://www.highcharts.com/
https://jkunst.com/highcharter/

18.4 Highcharts via {highcharter}

library(highcharter)

Registered S3 method overwritten by 'quantmod':
method from
as.zoo.data.frame zoo

hchart(chic, "scatter", hcaes(x = date, y = temp, group = season))

189

18 Working with Interactive Plots

100

90

80

70

N

60

AR

% @
0? 4 “0.0
° %

50
40

dwa)

P ®o

30

20

10

-10

190

18.5 Echarts via {echarts4r}

18.5 Echarts via {echarts4r}

Apache ECharts is a free, powerful charting and visualization library offering an easy way of building intuitive,
interactive, and highly customizable charts. Even though it is written in pure JavaScript, one can use it in
R via the {echarts4r} library thanks to John Coene. Check out the impressive example gallery or this app
made by the package developer John Coene.

library(echarts4r)

chic |>
e_charts(date) |>
e_scatter(temp, symbol size = 7) |>
e_visual_map(temp) |>
e_y_axis(name = "Temperature (°F)") |>
e_legend(FALSE)

191

https://echarts.apache.org/en/index.html
https://echarts4r.john-coene.com/
https://john-coene.com/
https://echarts4r.john-coene.com/articles/chart_types.html
https://johncoene.shinyapps.io/fopi-contest/

18 Working with Interactive Plots

Temperature (°F)

ao

Jul

1997 Jul 1998 Jul 1999

18.6 Chart.js via {charter}

charter is another package developed by John Coene that enables the use of a JavaScript visualization library
in R. The package allows you to build interactive plots with the help of the Charts.js framework.

library(charter)

192

https://github.com/JohnCoene/charter
https://www.chartjs.org/

chic$date_num <- as.numeric(chic$date)
doesn't work with class date

chart(data = chic, caes(date_num, temp)) |>
c_scatter(caes(color = season, group = season)) |>
c_colors(RColorBrewer: :brewer.pal(4, name = "Dark2"))

18.7 Bokeh via {rbokeh}

I Auvtumn [Sering [Summer [VWinter

90

80

70

60

50

2 a5,) .
e, S, eint
40 . =QIM’ : ..':lrﬁ .:..
3o ' . LY 17 s
30 : . ot . - “ i ‘ # .l-*z . (X
: L ﬁ" .u “: ‘
” Ty 43 ¥
10 & Vo s .
0 ‘=: :

10000 10200 10400

18.7 Bokeh via {rbokeh}

10600

10800

{rbokeh} is an R package that allows you to create interactive visualizations using the Bokeh library. It is
a powerful tool for creating interactive plots and adding interactivity to your visualizations. The following
example demonstrates how to create an interactive scatter plot using {rbokeh}. You can find more examples

and documentation on the rbokeh website.

library(rbokeh)
p <- figure() %>%
ly_points(Sepal.Length, Sepal.width, data =
color = Species, glyph = Species,
hover = list(Sepal.Length, Sepal.Width))

iris,

193

https://hafen.github.io/rbokeh/
https://bokeh.org/
https://hafen.github.io/rbokeh/

18 Working with Interactive Plots

45
. @ Species
i @ @ setosa
y @ o wversicolor
7 @ & virginica
1 L
T @ @ PO
. @ o9
. o oo &
= 33— o0 @
= D @ 000 @ Fi¥al
§ 8 oo i Fy
—] o o0 @ O WA AAT A
o O O® A BE
C‘}; L . oD O] &L A ES AL s,
1 @ [OTar] O A
8 ADA DAL = A A
1 O DN O AaA
T HEE 4 &
254 & | il &
1 O O
1 (o] |
. & O
]
1 T T T T T T T T T t T T T T T T T T T t
5 B 7 8
Sepal Length

18.8 Advanced Interactive plots using CanvasExpress

CanvasXpress is a JavaScript library that allows you to create interactive visualizations. The package
{canvasXpress} for R enables the creation of interactive plots directly from R. It is a powerful tool for
creating visualizations and adding interactivity to your plots. The following example demonstrates how
to create a bar-line graph using CanvasXpress. You can find more examples and documentation on the
CanvasXpress website.

library(canvasXpress)
y=read.table("https://www.canvasxpress.org/data/cX-generic-dat.txt", header=TRUE, sep="\t", quote="
x=read.table("https://www.canvasxpress.org/data/cX-generic-smp.txt", header=TRUE, sep="\t", quote="
z=read.table("https://www.canvasxpress.org/data/cX-generic-var.txt", header=TRUE, sep="\t", quote="
canvasXpress(

data=y,

194

https://www.canvasxpress.org/
https://www.canvasxpress.org/

18.9 Dygraphs via {dygraphs}

smpAnnot=x,

varAnnot=z,
graphOrientation="vertical",
graphType="BarLine",
legendColumns=2,
legendPosition="bottom",
lineThickness=2,
lineType="spline",
showTransition=FALSE,
smpLabelRotate=45,
smpTitle="Collection of Samples",
subtitle="Random Data",
theme="CanvasXpress",
title="Bar-Line Graphs",
xAxis=list("V1", "v2"),
xAxis2=list("V3", "v4"),
xAxis2TickFormat="%.0f T",
xAxisTickFormat="%.0f M"

)
Bar-Line Graphs
Random Data
80 M
'--.._____‘“‘-‘-
60 M
40M
20M
S) S %
Collection of Samples
mVvigvz2
W3 - V4

18.9 Dygraphs via {dygraphs}

{dygraphs} is an R package that allows you to create interactive time series plots. It is based on the JavaScript
library Dygraphs.

library(dygraphs)

lungDeaths <- cbind(mdeaths, fdeaths)
dygraph(lungDeaths)

195

https://rstudio.github.io/dygraphs/
https://dygraphs.com/

18 Working with Interactive Plots

2900
2800
2700
2600
2500
2400
2300
2200
2100
2000] |
1900
1800
1700
1600
1500
1400
1300
1200
1100
1000
900
800
700
600
500

400

300

200

100
Jan 1974 Apr 1974 Jul 1974 Oct 1974 Jan 1975 Apr 1975 Jul 1975 Oct 1975 Jan 1976 Apr 1976 Jul 1976 Oct 1976 Jan 1977 Apr 1977 Jul 1977 Oct 1977

And there are many more options to create interactive plots in R. The choice of the right library depends on
the specific requirements of your project and the desired level of interactivity. The examples above should
give you a good starting point to explore the possibilities of interactive plots in R. We’ll add more examples
in the future.

196

19 3D Plots Using {rayshader} package

rayshader is an open source package for producing 2D and 3D data visualizations in R. rayshader uses eleva-
tion data in a base R matrix and a combination of raytracing, hillshading algorithms, and overlays to generate
stunning 2D and 3D maps. In addition to maps, rayshader also allows the user to translate ggplot2 objects
into beautiful 3D data visualizations.

The models can be rotated and examined interactively or the camera movement can be scripted to create
animations. Scenes can also be rendered using a high-quality pathtracer, rayrender. The user can also create
a cinematic depth of field post-processing effect to direct the user’s focus to important regions in the figure.
The 3D models can also be exported to a 3D-printable format with a built-in STL export function, and can be
exported to an OB] file for use in other 3D modeling software. rayshader is a powerful tool for creating 3D
visualizations of data, and can be used to create stunning visualizations for scientific research, data analysis,
and art. You can find more information about rayshader at https://www.rayshader.com/.

Let’s see some 3D plots using rayshader.

library(ggplot2)
library(rayshader)

ggdiamonds = ggplot(diamonds) +
stat_density_2d(aes(x = x, y = depth, fill = after_stat(nlevel)),
geom = "polygon", n = 200, bins = 50,contour = TRUE) +
facet_wrap(clarity~.) +
scale_fill viridis_c(option = "A")

plot_gg(ggdiamonds, width = 5, height = 5, raytrace = FALSE, preview = TRUE)

197

19 3D Plots Using {rayshader} package

SN
67.5-

11 si2
65.0 -
62.5- '
60.0 -
Vs2 Vsi1

57.5-

VVS2
nlevel
67.5- 1.00

0.50

0.25

67.5-

65.0-

62.5-

60.0-

575-, , ., e
4 5 6 7 8

4 5 6 7 8
X

plot_gg(ggdiamonds, width = 5, height = 5, multicore = TRUE, scale = 250,
zoom = 0.7, theta 10, phi = 30, windowsize = c(800, 800))
Sys.sleep(0.2)

render_snapshot(clear = TRUE)

198

Rayshader will automatically ignore lines and other elements that should not be mapped to 3D. Here’s a
contour plot of the volcano dataset.

library(reshape2)
#Contours and other lines will automatically be ignored. Here is the volcano dataset:

ggvolcano = volcano %>%
melt() %>%

ggplot() +
geom_tile(aes(x = Varl, y = Var2, fill = value)) +
geom_contour(aes(x = Varl, y = Var2, z = value), color = "black") +

scale_x_continuous("X", expand = c(0, 0)) +
scale_y_continuous("Y", expand = c(0, 0)) +

scale_fill gradientn("Z", colours = terrain.colors(10)) +
coord_fixed()

par(mfrow = c(1, 2))
plot_gg(ggvolcano, width = 7, height = 4, raytrace = FALSE, preview = TRUE)

Warning: Removed 1861 rows containing missing values or values outside the scale range
(*geom_contour()).

175
150
125

100

plot_gg(ggvolcano, multicore = TRUE, raytrace = TRUE, width = 7, height = 4,
scale = 300, windowsize = c(1400, 866), zoom = 0.6, phi = 30, theta = 30)

199

19 3D Plots Using {rayshader} package

Warning: Removed 1861 rows containing missing values or values outside the scale range
(" geom_contour() ™).

Sys.sleep(0.2)
render_snapshot(clear = TRUE)

Rayshader also detects when the user passes the color aesthetic, and maps those values to 3D. If both color
and fill are passed, however, rayshader will default to fill.

mtplot = ggplot(mtcars) +
geom_point(aes(x = mpg, y = disp, color = cyl)) +
scale_color_continuous(limits = c(0, 8))

par(mfrow = c(1, 2))
plot_gg(mtplot, width = 3.5, raytrace = FALSE, preview = TRUE)

200

[J
400 - []
cyl
e®e¢ °® 8
[]
o 300- ([4 6
) (X 1
© ® 4
[)
200 - 2
()
'.'. 0
o, °
100 - °
[] e ©

10 15 20 25 30 35
mpg

plot_gg(mtplot, multicore = TRUE, raytrace = TRUE, width = 7, height = 4,

scale = 300, windowsize = c(1400, 866), zoom = 0.6, phi = 30, theta = 30)
Sys.sleep(0.2)
render_snapshot(clear = TRUE)

Utilize combinations of line color and fill to create different effects. Here is a terraced hexbin plot, created by
mapping the line colors of the hexagons to black.

201

19 3D Plots Using {rayshader} package

a = data.frame(x = rnorm(20000, 10, 1.9), y = rnorm(20000, 10, 1.2))
b = data.frame(x = rnorm(20000, 14.5, 1.9), y = rnorm(20000, 14.5, 1.9))
c = data.frame(x = rnorm(20000, 9.5, 1.9), y = rnorm(20000, 15.5, 1.9))

data = rbind(a, b, c)

#Lines
library(hexbin)

pp = ggplot(data, aes(x = X, y =y)) +
geom_hex(bins = 20, size = 0.5, color = "black") +
scale_fill_viridis_c(option = "C")

Warning: Using “size” aesthetic for lines was deprecated in ggplot2 3.4.0.
i Please use "“linewidth® instead.

par(mfrow = c(1, 2))
plot_gg(pp, width = 5, height = 4, scale = 300, raytrace = FALSE, preview = TRUE)

count
1000

750
500

250

plot_gg(pp, width = 5, height = 4, scale = 300, multicore = TRUE, windowsize = c(1000, 800))
render_camera(fov = 70, zoom = 0.5, theta = 130, phi = 35)

Sys.sleep(0.2)

render_snapshot(clear = TRUE)

202

Pretty cool, right? You can create stunning 3D visualizations using rayshader. You can find more information
about rayshader at https://www.rayshader.com/.

We can also Use rayshader to create 3D maps. That will be whole another book, we’ll publish that soon. Stay
tuned!

203

20 Geographical Data Analysis using {sf} and

R has well-supported classes for storing spatial data (sp) and interfacing to the above mentioned environments
(rgdal, rgeos), but has so far lacked a complete implementation of simple features, making conversions at
times convoluted, inefficient or incomplete. The package sf tries to fill this gap, and aims at succeeding sp in
the long term. However This is a Huge topic to cover that we need a separate book for this.

We'll just give you a brief overview of how to plot maps using sf and ggplot2.

Load necessary libraries

library(bangladesh)

library(ggplot2)

library(tidyverse)

-- Attaching core tidyverse packages --------------—————————- tidyverse 2.0.0 --
v dplyr 1.1.4 v readr 2.1.5

v forcats 1.0.0 v stringr 1.5.1

v lubridate 1.9.3 v tibble 3.2.1

vV purrr 1.0.2 v tidyr 1.3.1

-- Conflicts ------—=--- - tidyverse_conflicts() --

x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-1ib.org/>) to force all conflicts to become errors

Get map data, join with population data, and plot in a single pipeline
data <- get_map("district") %>%
left join(bangladesh::pop_district_2011[, c("district", "population")], by = c("District" = "distric

pp <- data %>%
ggplot() +
geom_sf(aes(fill = population), col = "grey30") +
theme_void() +
viridis::scale_fill_viridis(trans = "log", name="Population", labels = scales::unit_format(unit = "M
labs(
title = "Bangladesh Population Map",
subtitle = "Population & Housing Census 2011",
caption = "Data Source: BBS"

205

20 Geographical Data Analysis using {sf} and

pp

Bangladesh Population Map
Population & Housing Census 2011

Population
8.89 M

3.27TM

1.20M

0.44 M

Data Source: BBS

Here is another example:

division_data <- get_map("division")
division_centroids <- bangladesh::get_coordinates(level = "division")
ggplot(data = division_data) +
geom_sf() +
geom_sf_label(aes(label = Division)) +
geom_point(data = division_centroids, x = division_centroids$lon, y = division_centroids$lat, col
xlab("")+ ylab("")+
theme_minimal ()

Warning in st_point_on_surface.sfc(sf::st_zm(x)): st_point_on_surface may not
give correct results for longitude/latitude data

206

26°N

25°N

.
(Rajsani| -~ {Shet

24°N DHeka

23°N

22°N

21°N

88°E 89°E 90°E 91°E 92°E
You can also make 3D map using rayshader sf and ggplot2 package. Here is an example:

library(rayshader)

plot_gg(pp+theme_bw(), multicore = TRUE, width = 4 ,height=6, fov = 70, zoom = 0.5)
Sys.sleep(0.2)
render_snapshot(clear = TRUE)

207

20 Geographical Data Analysis using {sf} and

If You Want to make maps Interactive like this X Interactive Maps, here is an example:

library(leaflet)

leaflet() %>%
addTiles() %>%
addMarkers(1ng=90.40155705289271, 1lat=23.725810762885487, popup="Shahidullah Hall")

PhantomJS not found. You can install it with webshot::install_phantomjs(). If it is installed, please me

208

https://rana2hin.quarto.pub/mapsinbooks/

209

20 Geographical Data Analysis using {sf} and

The field of geographical data analysis is a vast and ever-evolving domain, offering an array of techniques and
tools to explore and understand spatial data. In this book, we have provided a glimpse into the fascinating
world of Data Visualization using ggplot2 and introducing you to the fundamental concepts and methods
that form the foundation of spatial analysis.

While we have covered a range of topics, it is important to recognize that this is merely the tip of the iceberg.
Geographical data analysis encompasses a multitude of specialized areas, each with its own unique challenges
and solutions. As we continue our journey through this field, we are working on a dedicated book that will
delve deeper into the intricacies of geographic data analysis.

In this forthcoming work, we will explore in greater depth the realm of shapefiles, a crucial data format for
representing geographical features. Additionally, we will dive into the powerful capabilities of the sf package,
which provides a comprehensive set of tools for working with spatial vector data in R.

Furthermore, we will introduce you to leaflet, a cutting-edge library that enables the creation of interac-
tive web maps, allowing you to visualize and analyze spatial data in a dynamic and engaging manner. The
rayshader package will also be explored, offering techniques for generating stunning 3D visualizations of
geographical data, providing new perspectives and insights.

Another exciting area we will cover is the tmap package, a versatile tool for creating thematic maps and
visualizing spatial patterns. With its rich set of features and extensive customization options, tmap empowers
you to communicate your spatial data in a clear and compelling way.

Beyond these specific packages and techniques, we are actively engaged in the development of new and inno-
vative tools for geographical data analysis. Our goal is to push the boundaries of what is possible, providing
researchers, analysts, and practitioners with cutting-edge solutions to tackle complex spatial problems.

As we continue to explore the depths of this fascinating field, we invite you to stay tuned for our upcoming
work. Together, we will embark on a journey of discovery, unlocking the full potential of geographical data
analysis and shaping the future of spatial research and applications.

210

Remarks, Tipps & Resources

Using ggplot2 in Loops and Functions

The grid-based graphics functions in lattice and ggplot2 create a graph object. When you use these func-
tions interactively at the command line, the result is automatically printed. However, when using source ()
or inside your own functions, you will need an explicit print() statement, i.e., print(g) in most of our
examples. For more information, see also the R FAQ page.

Additional Resources

« “ggplot2: Elegant Graphics for Data Analysis” by Hadley Wickham, available via open-access!

« “Fundamentals of Data Visualization” by Claus O. Wilke about data visualization in general but using
{ggplot2}. (You can find the codes on his GitHub profile.)

« “Cookbook for R” by Winston Chang with recipes to produce R plots

« Gallery of the Top 50 ggplot2 visualizations

« Gallery of {ggplot2} extension packages

« How to extend {ggplot2} by Hadley Wickham

« The fantastic R4DS Online Learning Community that offers help and mentoring for all things related
to the content of the “R for Data Science” book by Hadley Wickham

« #TidyTuesday, a weekly social data project focusing on ggplots—check also #TidyTuesday on Twitter
and this collection of contributions by Neil Grantham

A two-part, 4.5-hours tutorial series by Thomas Linn Pedersen (Part 1 | Part 2)

211

https://cran.r-project.org/doc/FAQ/R-FAQ.html#Why-do-lattice_002ftrellis-graphics-not-work_003f
https://ggplot2-book.org/
http://serialmentor.com/dataviz/
https://github.com/clauswilke/dataviz
http://www.cookbook-r.com/Graphs/
http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html
https://exts.ggplot2.tidyverse.org/gallery/
https://cran.r-project.org/web/packages/ggplot2/vignettes/extending-ggplot2.html
https://www.rfordatasci.com/
https://github.com/rfordatascience/tidytuesday
https://twitter.com/hashtag/TidyTuesday?lang=en
https://nsgrantham.com/tidytuesdayrocks/
https://www.youtube.com/watch?v=h29g21z0a68
https://www.youtube.com/watch?v=0m4yywqNPVY

	Before We Start
	What you'll discover

	Tie Your Seatbelt
	Installing Packages

	The Dataset
	The ggplot2 Package
	A Default ggplot

	Working with Axes
	Change Axis Titles
	Increase Space between Axis and Axis Titles
	Change Aesthetics of Axis Titles
	Change Aesthetics of Axis Text
	Rotate Axis Text
	Removing Axis Text & Ticks
	Removing Axis Titles
	Limiting Axis Range
	Forcing Plot to Start at Origin
	Axes with Same Scaling
	Using a Function to Alter Labels

	Working with Titles
	Add a Title
	Making Title Bold & Adding a Space at the Baseline
	Adjusting Position of Titles
	Using a Non-Traditional Font in Your Title
	Adjusting Spacing in Multi-Line Text

	Working with Legends
	Disabling the Legend
	Eliminating Legend Titles
	Adjusting Legend Position
	Modifying Legend Direction
	Change Style of the Legend Title
	Modifying Legend Title
	Rearrange Order of Legend Keys
	Modify Legend Labels
	Adjust Background Boxes in the Legend
	Adjust Size of Legend Symbols
	Exclude a Layer from the Legend
	Manually Adding Legend Items
	Use Other Legend Styles

	Working with Backgrounds & Grid Lines
	Change the Panel Background Color
	Change Grid Lines
	Change Spacing of Gridlines
	Change the Plot Background Color

	Working with Margins
	Working with Multi-Panel Plots
	Create a Grid of Small Multiples Based on Two Variables
	Create Small Multiples Based on One Variable
	Allow Axes to Roam Free
	Modify Style of Strip Texts
	Create a Panel of Different Plots

	Working with Colors
	Specify Single Colors
	Assign Colors to Variables
	Qualitative Variables
	Quantitative Variables

	Working with Themes
	Change the Overall Plotting Style
	Change the Font of All Text Elements
	Change the Size of All Text Elements
	Change the Size of All Line and Rect Elements
	Create Your Own Theme
	Update the Current Theme

	Working with Lines
	Add Horizonal or Vertical Lines to a Plot
	Add a Line within a Plot
	Add Curved Lines and Arrows to a Plot

	Working with Text
	Add Labels to Your Data
	Add Text Annotations
	Use Markdown and HTML Rendering for Annotations

	Working with Coordinates
	Flip a Plot
	Fix an Axis
	Reverse an Axis
	Transform an Axis
	Circularize a Plot

	Working with Chart Types
	Alternatives to a Box Plot
	Create a Rug Representation to a Plot
	Create a Correlation Matrix
	Create a Contour Plot
	Create a Heatmap of Counts
	Create a Ridge Plot

	Working with Ribbons (AUC, CI, etc.)
	Working with Smoothings
	Default: Adding a LOESS or GAM Smoothing
	Adding a Linear Fit
	Specifying the Formula for Smoothing

	Working with Interactive Plots
	Combination of {ggplot2} and {shiny}
	Plot.ly via {plotly} and {ggplot2}
	ggiraph and ggplot2
	Highcharts via {highcharter}
	Echarts via {echarts4r}
	Chart.js via {charter}
	Bokeh via {rbokeh}
	Advanced Interactive plots using CanvasExpress
	Dygraphs via {dygraphs}

	3D Plots Using {rayshader} package
	Geographical Data Analysis using {sf} and
	Remarks, Tipps & Resources
	Using ggplot2 in Loops and Functions
	Additional Resources

